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Vocabulary

A few words frequently used in the Bayesian paradigm:

paradigm
Refers to a coherent system of representation of the world, a way of seeing things.

a priori
In Bayesian statistics, the Latin expression a priori is widely used. It means previously in
English, or more precisely based on data prior to the experiment. Etymologically this expession
comes from “a priori ratione” which means in Latin by a preceding reason, and opposes a
prosteriori.

a posteriori
The Latin expression a posteriori is also widely used in the Bayesian framework. It means after
the fact in English, or more precisely by relying on experience, on facts. Etymologically this
expession comes from “a posteriori ratione” which means in Latin by a reason that comes after,
and opposes a priori.

elicitation
Action formalizing an expert’s knowledge to enable it to be shared, e.g. to incorporate it into
a model.
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Course objectives

I. Familiarize oneself with the Bayesian framework:

1. understand and assess a Bayesian modeling strategy, and discuss its underlying as-
sumptions

2. rigorously describe expert knowledge by a quantitative prior distribution

II. Be able to study and perform Bayesian analyses in biomedical applications:

1. understand and discuss assumptions and methodological choices in biomedical liter-
ature using Bayesian methods, including “under the hood” estimation machinery

2. understand, discuss and reproduce a Bayesian (re-)estimation of a proportion or a
relative risk using

3. understand and perform a Bayesian linear regression using applied to meta-
analysis

4. put into perspective the results from a Bayesian analysis described in a scientific
article

Disclaimer

This course will NOT teach you how to:
1 design an adaptive clinical trial – for this see Berry (2006). Bayesian clinical trials.

Nature Reviews: Drug Discovery 5:27–36. https://doi.org/10.1038/nrd1927

2 carefully perform a meta-analysis – for this, see Harrer, Cuijpers, Furukawa, Ebert
(2019). Doing Meta-Analysis in R: A Hands-on Guide. https://bookdown.org/MathiasHarrer/
Doing_Meta_Analysis_in_R/. DOI: 10.5281/zenodo.2551803.

These lecture notes include mathematical and technical details for the sake of completeness
that are not necessary for this course.
Nonetheless, these notes are by no means exhaustive, and the curious reader will be referred to
more comprehensive textbooks such as The Bayesian Choice by C. Robert.
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Some motivational examples from biomedical research
Apologies, this section is a lot about COVID-19.

Diagnostic tests
Let us imagine that someone gets a positive result on a COVID-19 test. But knowing the test
is imperfect, they might wonder: What is the probability that they are actually infected by the
SARS-CoV-2 ? This question was recently tackled in a news article in the Guardian 1. Good et
al. focus on the opposite question in a short research report in the Journal of General Internal
Medicine of what to make of a negative test result 2. In both instances, Bayesian thinking is
paramount to account for the epidemiological context and make inform decision based on the
test result. This kind of question bears important consequences in the context of the current
pandemic where surgery protocols include pre-operative SARS-CoV-2 negative testing 3.

An additional example related to this topic is the work of Gelman & Carpenter 4 who
can incorporate uncertainty about sensitivity and specificity of a given tests for estimating
prevalence of COVID-19 in California.

Clinical trial design
Houston et al. 5 presented the methodology of the ATTACC trial, an adaptive Bayesian ran-
domized controlled trial, in Clinical Trials: “Using a Bayesian framework, the trial will declare
results as soon as pre-specified posterior probabilities for superiority, futility, or harm are
reached. The trial uses response-adaptive randomization to maximize the probability that
patients will receive the more beneficial treatment approach, as treatment effect
information accumulates within the trial.”

Study analyses
The REMAP-CAP trial
An important analysis of drug repositioning against COVID-19 was recently in the New England
Journal of Medicine 6. Its goal was to evaluate whether IL-6 receptor antagonists tocilizumab
and sarilumab were able to improve survival for critically ill patients with Covid-19 receiving
organ support in ICU based on data from the REMAP-CAP clinical trial (ClinicalTrials.gov
NCT02735707).The authors used the Bayesian framework to analyse their data and use specific
Bayesian concepts when communicating their results and conclusions:
“The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14)
for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with
control, yielding posterior probabilities of superiority to control of more than 99.9%

1. https://www.theguardian.com/world/2021/apr/18/obscure-maths-bayes-theorem-reliability-covid-
lateral-flow-tests-probability

2. Good et al. Interpreting COVID-19 Test Results: a Bayesian Approach. Journal of General Internal
Medicine 35:2490-2491, 2020. DOI: 10.1007/s11606-020-05918-8

3. see for instance Yang & Nguyen, Re-visiting preoperative SARS-CoV-2 testing using a Bayesian approach,
Can J Anesth, 67:1690–1691, 2020. DOI: 10.1007/s12630-020-01767-5

4. Gelman & Carpenter, Bayesian analysis of tests with unknown specificity and sensitivity, JRSS C,
69(5):1269-1283, 2020. DOI: 10.1111/rssc.12435

5. Anti-Thrombotic Therapy to Ameliorate Complications of COVID-19 (ATTACC): Study design and
methodology for an international, adaptive Bayesian randomized controlled trial. Clinical Trials, 17(5):491-
500, 2020. DOI: 10.1177/1740774520943846.

6. REMAP-CAP Investigators, Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19.
New England Journal of Medicine, 384(16):1491-1502, 2021. DOI: 10.1056/NEJMoa2100433
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and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the
pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with
the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability
of superiority of more than 99.9%.”

The BNT162b2 (Pfizer-BioNTech) vaccine against COVID-19
The results from the evaluation and of safety of the BNT162b2 vaccine from Pfizer & BioNTech
have recently been published in the New England Journal of Medicine 7. They also rely on
Bayesian indicators to present their results, as shown in Figure 1.

n engl j med 383;27 nejm.org December 31, 20202612

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

the occurrence of adverse events more than 2 to 
3.5 months after the second dose and more 
comprehensive information on the duration of 
protection remain to be determined. Although 
the study was designed to follow participants for 
safety and efficacy for 2 years after the second 
dose, given the high vaccine efficacy, ethical and 
practical barriers prevent following placebo re-
cipients for 2 years without offering active im-
munization, once the vaccine is approved by 
regulators and recommended by public health 
authorities. Assessment of long-term safety and 
efficacy for this vaccine will occur, but it cannot 
be in the context of maintaining a placebo group 
for the planned follow-up period of 2 years after 
the second dose. These data do not address 
whether vaccination prevents asymptomatic in-
fection; a serologic end point that can detect a 
history of infection regardless of whether symp-
toms were present (SARS-CoV-2 N-binding anti-
body) will be reported later. Furthermore, given 
the high vaccine efficacy and the low number of 
vaccine breakthrough cases, potential establish-

ment of a correlate of protection has not been 
feasible at the time of this report.

This report does not address the prevention 
of Covid-19 in other populations, such as young-
er adolescents, children, and pregnant women. 
Safety and immune response data from this trial 
after immunization of adolescents 12 to 15 years 
of age will be reported subsequently, and addi-
tional studies are planned to evaluate BNT162b2 
in pregnant women, children younger than 12 
years, and those in special risk groups, such as 
immunocompromised persons. Although the 
vaccine can be stored for up to 5 days at stan-
dard refrigerator temperatures once ready for use, 
very cold temperatures are required for shipping 
and longer storage. The current cold storage re-
quirement may be alleviated by ongoing stability 
studies and formulation optimization, which 
may also be described in subsequent reports.

The data presented in this report have sig-
nificance beyond the performance of this vac-
cine candidate. The results demonstrate that 
Covid-19 can be prevented by immunization, 

Table 2. Vaccine Efficacy against Covid-19 at Least 7 days after the Second Dose.*

Efficacy End Point BNT162b2 Placebo

Vaccine Efficacy, %  
(95% Credible 

Interval)‡

Posterior  
Probability 

(Vaccine Efficacy 
>30%)§

No. of 
Cases

Surveillance 
Time (n)†

No. of 
Cases

Surveillance 
Time (n)†

(N=18,198) (N=18,325)

Covid-19 occurrence at least  
7 days after the second 
dose in participants with-
out evidence of infection

8 2.214 (17,411) 162 2.222 (17,511) 95.0 (90.3–97.6) >0.9999

(N=19,965) (N=20,172)

Covid-19 occurrence at least  
7 days after the second 
dose in participants with 
and those without evidence 
of infection

9 2.332 (18,559) 169 2.345 (18,708) 94.6 (89.9–97.3) >0.9999

*  The total population without baseline infection was 36,523; total population including those with and those without prior evidence of infec-
tion was 40,137.

†  The surveillance time is the total time in 1000 person-years for the given end point across all participants within each group at risk for the 
end point. The time period for Covid-19 case accrual is from 7 days after the second dose to the end of the surveillance period.

‡  The credible interval for vaccine efficacy was calculated with the use of a beta-binomial model with prior beta (0.700102, 1) adjusted for the 
surveillance time.

§  Posterior probability was calculated with the use of a beta-binomial model with prior beta (0.700102, 1) adjusted for the surveillance time.

The New England Journal of Medicine 
Downloaded from nejm.org on April 30, 2021. For personal use only. No other uses without permission. 

 Copyright © 2020 Massachusetts Medical Society. All rights reserved. 

Figure 1 – Table 2 from Polack et al., NEJM, 2020

7. Polack et al., Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine, New England Journal of
Medicine, 383(27):2603-2615, 2020. DOI: 10.1056/nejmoa2034577
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Chapter 1

Introduction to Bayesian statistics

Statistics is a mathematical science, whose objective is to describe what has happened and to
assess what may happen in the future. It relies on the observation of natural phenomena in
order to propose an interpretation, often through probabilistic models.

1.1 Reminder on frequentist statistics
Frequentist statistics refers to the theory of statistics developed largely by Neyman & Pear-

son, and based on a deterministic view of the parameters of probabilistic models, which are
the very objects that statistical inference seeks to estimate. Maximum likelihood estimation is
one of the fundamental tools of frequentist statistics, as is the statistical test theory with its
associated confidence interval concept.

1.2 The Bayesian paradigm

1.2.1 Bayes’ theorem
The word “Bayesian” comes from the name of Reverend Thomas Bayes. In 1763, the latter
publishes an article 1 in which he exposes the following theorem:

P(A|E) = P(E|A)P(A)
P(E|A)P(A) + P(E|Ā)P(Ā)

= P(E|A)P(A)
P(E)

Posterity refers to this theorem as Bayes’s theorem, even though the latter actually presents a
continuous version in his work:

g(x|y) = f(y|x)g(x)∫
f(y|x)g(x) dx

where X and Y are two random variables whose realisations are denoted x and y respectively,
f(y|x) represents the conditional distribution of Y knowing the realization of X, and g(x) is
the marginal distribution of X. The French mathematician Laplace also found these results
independently. Laplace and Bayes both further described the uncertainty about the parameters
θ of a parametric model f(y|θ) through a probability distribution π. Bayes’ theorem is then
written:

p(θ|y) = f(y|θ)π(θ)∫
f(y|θ)π(θ) dθ

1. T. Bayes, 1763. An essay towards solving a problem in the doctrine of chances, The Philosophical Trans-
actions of the Royal Society, 53: 370-418. (posthumous)
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The fundamental difference between the frequentist approach and the Bayesian approach is
thus that the latter does not consider the parameters as fixed (i.e. for which there is one true
value), but rather as random variables. It is a profound philosophical difference, even if there
are many bridges between the two approaches.

This way of considering parameters as random variables induces a marginal probability
distribution π(θ) on the parameters. This distribution is called the prior or the distribution a
priori. Its specification is both an asset of Bayesian analysis – since it allows the hypotheses
on the subject under study to be formalized and taken into account in the modeling – but also
a weakness – since it necessarily introduces subjectivity into the analysis. These two sides of
the same coin will be put forward in turn by the Bayesians and their detractors.

1.2.2 Bayesian vs. Frequentists: an outdated debate
The ideas of the Reverend Bayes, found independently and then further explored by Laplace,
had a profound influence on the development of statistics during the second half of the 18th

century and the 19th century. But with the advent of modern statistics at the turn of the 20th

century with Galton and Pearson, then with Fisher and Neymann in particular, frequentist
theory became dominant. It was only towards the end of the 20th century that Bayesian statis-
tics came back on the scene, notably thanks to the rise of the computer and the development of
efficient numerical methods which made it possible to overcome certain limitations previously
present in Bayesian analysis.

Under the influence of Fisher in particular, who firmly rejected Bayesian reasoning, the
20th century saw the statistical community split in two between supporters of the Bayesian
approach and supporters of the frequentist approach (considering the parameters as fixed),
with sometimes virulent debates opposing the two communities.

Today, these quarrels are outdated, thanks in part to the practical successes of both ap-
proaches on modern and complex problems. In addition, a number of methods, such as empirical
Bayes methods, lie at the boundary between the two approaches and bridge the gap between
them. Today’s (bio)statistician must therefore be pragmatic and versatile, integrating Bayesian
analysis into his/her toolbox to solve the problems he/she faces.

“Être ou ne pas être bayésien, là n’est plus la question: il s’agit d’utiliser à bon escient les
outils adaptés quand cela est necessaire – To be, or not to be, Bayesian, that is no longer the
question: it is a matter of wisely using the right tools when necessary.” Gilbert Saporta
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Chapter 2

Bayesian modeling

2.1 Refresher on frequentist modeling
Let us consider a series of iid (independent and identically distributed) random variables Y =
(Y1, . . . , Yn), of which we observe a sample y = (y1, . . . , yn). A frequentist model for their
probability distribution is the following probability density family: f(y|θ), θ ∈ Θ. This model
assumes there is a “true” distribution of Y characterized by the “true” value of the parameter
θ∗ which is written f(y|θ∗). We then want an estimator θ̂, often one that has good asymptotic
properties (generally unbiased for θ∗ and with as little variance as possible).

2.2 Historical motivating example
Laplace looked into the probability of birth of girls (rather than boys). To do so, he used the
births observed in Paris between 1745 and 1770, during which 241,945 girls and 251,527 boys
were born. The question is then: “When a child is born, is it equally likely to be a girl or a
boy?”

2.3 Construction of a Bayesian model
The first step in building a model is always to identify the question you want to answer. Once
this step is completed, it is a matter of determining what kind of observations are available and
will be able to inform our response to the question of interest.

2.3.1 The sampling model
Let us denote the observations avalable y. Like a frequentist model, a parametric Bayesian
model consists of first proposing a probabilistic model underlying the generation of these ob-
servations: Yi

iid∼ f(y|θ). The latter is called the “sampling model”

In the historical example, Laplace proposed a sampling model based on Bernoulli’s law. Let
be Yi the random variable whose value is 1 if the new born i is a girl, and 0 if it is a boy:
Yi ∼ Bernoulli(θ), where θ ∈ [0, 1].

10



2.3.2 Prior distribution
In Bayesian modeling, compared to frequentist modeling, we add a probability distribution
(defined on the parmaeters space Θ), called prior distribution:

θ ∼ π(θ)

Yi|θ
iid∼ f(y|θ)

θ will thus be treated like a random variable, but which is never observed !

In the historical application, Laplace first considered a uniform prior on the probability θ
that a newborn would be a girl rather than a boy: θ ∼ U[0,1]

2.3.3 Posterior distribution
The purpose of such a Bayesian modeling is to infer the posterior distribution of the parameters,
i.e. the law of θ conditionally on the observations: p(θ|Y ), which is called distribution a
posteriori or posterior distribution. It is calculated from the sampling model f(y|θ) – from
which we obtain the likelihood f(y|θ) for all observations – and the prior π(θ) thanks to
Bayes’ theorem:

p(θ|y) = f(y|θ)π(θ)
f(y)

where f(y) =
∫

f(y|θ)π(θ) dθ is the marginal law of Y .

Example with a uniform prior

In the historical example, the likelihood is thus:

f(y|θ) =
n∏

i=1
θyi(1 − θ)(1−yi) = θS(1 − θ)n−S

where S =
n∑

i=1
yi. We then get the following posterior :

p(θ|y) = θS(1 − θ)n−S

f(y)

It can be shown that f(y) =
∫ 1

0 θS(1 − θ)n−S dθ = 1
(n

S)(n+1)
thanks to a series of integration

by parts, where
(

n
S

)
= n!

S!(n−S)! . The distribution a posteriori is finally the following: p(θ|y) =(
n
S

)
(n + 1)θS(1 − θ)n−S. To answer the question of interest, we can then calculate:

P (θ ≥ 0.5|y) =
∫ 1

0.5
p(θ|y) =

(
n

S

)
(n + 1)

∫ 1

0.5
θS(1 − θ)n−S dθ

Unfortunately, this integral (said to be “incomplete”) has no analytical solution. An approxi-
mation by a normal distribution however allowed Laplace to conclude that the probability of
birth of a girl is lower than that of a boy 1, since he obtained: P (θ ≥ 0.5|y) ≈ 1.15 10−42

1. This conclusion has since been confirmed and seems to be valid for the human species in general.
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Example of the Beta distribution conjugacy

Let us now use a different prior distribution, for instance the Beta(α, β) distribution whose
density is written: f(θ) = (α+β−1)!

(α−1)!(β−1)!θ
α−1(1 − θ)β−1 (for α > 0 and β > 0).
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Examples of various parametrizations for the Beta distribution

We notice that the uniform distribution is a special case of the Beta distribution when α and β
are both equal to 1. If one recalculate the posterior distribution with the prior π = Beta(α, β),
one easily gets:

p(θ|y) ∝ θα+S−1(1 − θ)β+(n−S)−1

where the notation “∝” means “proportional to” (i.e. up to a multiplicative constant). We
recognize, up to a normalization constant, the form of a Beta distribution, whose parameter pair
would be (α + S, β + (n − S)). Thus, we deduce from this that θ|y ∼ Beta(α + S, β + (n − S)).
This is called a conjugated distribution because the posterior and the prior belong to the same
parametric family.

We can now evaluate the impact of this Beta prior on our result based on the choice of
hyperparameters α and β. We notice that the prior doesn’t seem to affect our result here.

Interpretation of the prior Parameters of the Beta distribution P (θ ≥ 0.5|y)
#boys > #girls α = 0.1, β = 3 1.08 10−42

#boys < #girls α = 3, β = 0.1 1.19 10−42

#boys = #girls α = 4, β = 4 1.15 10−42

#boys ̸= #girls α = 0.1, β = 0.1 1.15 10−42

non-informative α = 1, β = 1 1.15 10−42

Table 2.1 – For 493,472 newborns including 241,945 girls

That is because we have a lot of observations at hand. The impact of the prior on the posterior
then becomes very small compared to the amount of information provided by the observations.
If we imagine that we had observed only 20 births, including 9 girls, then we notice a much
greater influence of the prior.
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Interpretation of the prior Parameters of the Beta distribution P (θ ≥ 0.5|y)
#boys > #girls α = 0.1, β = 3 0.39
#boys < #girls α = 3, β = 0.1 0.52
#boys = #girls α = 4, β = 4 0.46
#boys ̸= #girls α = 0.1, β = 0.1 0.45
non-informative α = 1, β = 1 0.45

Table 2.2 – For 20 newborns including 9 girls

α = 0.1, β = 0.1 α = 0.1, β = 3 α = 1, β = 1 α = 3, β = 0.1 α = 4, β = 4
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2.3.4 The thorny question of the prior choice
An essential feature of the Bayesian approach is thus to have a distribution on the parameters.
In Bayesian inference, we start from a distribution a priori, and the information contained in
the observations is used to obtain the distribution a posteriori. The a priori distribution brings
flexibility compared to a frequentist model, by allowing external knowledge to be incorporated
into the model. For example, this may solve identifiability problems sometimes encountered
by a purely frequentist approach when the information provided by the observations is not
sufficient to estimate all the parameters of interest.

This is a great advantage of the Bayesian approach. But on the other hand, the choice of this
distribution on the parameters introduces an intrinsic subjectivity into the analysis, which can
be critisized. For example, a statistician working for a pharmaceutical company could choose
a prior distribution giving a high probability that a drug is effective, which will necessarily
influence the result. The choice (or elicitation) of this prior distribution is therefore sensitive.

First of all, let us make two theoretical remarks:
1 the support of the posterior must be included in the support of the prior. In other

words, if π(θ) = 0, then p(θ|y) = 0.
2 in general we assume the independence of the different parameters a priori (when there

is more than one parameter – which is almost always the case in applications), which
allows to elicit the priors parameter by parameter.

Prior Elicitation

There exist strategies to communicate with non-statistical experts to transform their prior
knowledge into prior distribution.

The simplest method is to ask the experts to give weights (or probabilities) to ranges of
values: this is the “histogram method”. However, when the parameter can take values in an
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unbounded scale, this method might give a zero prior for parameter values that are nevertheless
possible. . .

Another approach is to give ourselves a parametric family of distributions p(θ|η) and to
choose η so that the prior distribution is in agreement with what the experts think for specific
characteristics of the problem (for example, the mean and variance, or simple quantiles such
as quartiles, could coincide with their views). This solves the support problem raised by the
histogram method. However, the choice of the parametric family can be important. For exam-
ple, a normal N (0, 2.19) distribution has the same quartiles as a Cauchy C(0, 1) distribution
(namely −1, 0, 1). But these two priors can give quite different distributions a posteriori. One
strategy for determining quartiles is to ask the following questions for instance:

— for the median: Can you determine a value such that theta is as likely to be above or to
be below ?

— then for the first quartile: Suppose you are told that θ is below [a given median value],
can you then determine a new value such that θ is as likely to be above or to be below?

— similarly the third quartile is determined. . .
Software exists to help elicit prior distribution by experts: see for example the academic tool
SHELF 2.

One can also elicit priors from the literature. The idea is to define the moments of the prior
such that they give a reasonable probability to the parameter values that have been identified
in the literature. If we propose a normal distribution N (µ, σ2), we can for example choose µ
and σ so that the smallest value given in the literature is equal to µ − 1.96σ and the largest
to µ + 1.96σ (a trained eye will have recognised the 2.5% and 97.5% quantiles of the normal
distribution). A more elaborate approach is to maximize the likelihood of literature values. . .

The quest for non-informative priors

For some parameters (or even all parameters) it’s common that one have no prior knowledge
whatsoever. One can then try to define a “non-informative” prior distribution. For example
if the parameter is the probability that a coin will fall on heads or tails, a non-informative
distribution could (at first glance) be the uniform distribution on [0, 1] (Bayes’ historical choice
in 1763). However, two major difficulties emerge:

1 Improper distributions
The first challenge is that this can lead to consider improper distributions. An improper
distribution is characterized by a density which does not sum to one. For example, for a
mean parameter of a normal distribution, it may seem natural to define a constant prior
with density π(θ) = c (i.e. all possible values on ] − ∞, +∞[ have the same probability).
Of course

∫ ∞

−∞
c dθ = ∞, and such a choice does not define a probability distribution ! It

is however acceptable because the posterior is (most of the time) proper. Indeed:

p(θ|y) = f(y|θ)c∫
f(y|θ)c dθ

If
∫

f(y|θ)c dθ = K (as it is often the case), then p(θ|y) = f(y|θ)
K

is a proper density (i.e.
which sums to 1).

2. SHELF Software at http://www.tonyohagan.co.uk/shelf/ and the user-friendly package
https://CRAN.R-project.org/package=SHELF
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2 Non-invariant distributions
The second challenge comes from the non-invariance of the uniform distribution for
non-linear transformations of parameters. Indeed if we make a transformation of the pa-
rameters γ = g(θ), the density of γ is written: π(γ) = |J | π(θ), where |J | is the Jacobian
of the transformation (i.e. the determinant of the Jacobian matrix J = ∂g−1(γ)

∂γ
). For

example if we take a uniform density equal to 1 for θ on (0, +∞) and we do the trans-
formation γ = log(θ), we have g−1(γ) = eγ and |J | = eγ. So we have π(γ) = eγ, which is
not the characterization of a uniform distribution. Hence the following paradox: if the
uniform distribution for θ reflects a total absence of a priori knowledge on θ, we should
also have a total absence of a priori knowledge on γ, which should translate into a uni-
form distribution on γ. But that cannot be true. Thus the uniform distribution cannot
generally be the distribution representing an absence of prior knowledge. This is a cen-
tral argument which led Fisher, in 1922, to propose the maximum likelihood estimator,
possessing an invariance property for non-linear transformations of parameters.
NB: This does not mean that one cannot take a uniform distribution as their prior,
but one must keep in mind that the uniform distribution only applies to a specific
parameterization. . .

To tackle these challenges, various solutions have been proposed. They have shown that there
is no such thing as a completely non-informative prior distribution, but some can be considered
as weakly informative.

Jeffreys’ priors

Perhaps the most successful approach to weakly informative priors is that of Jeffreys. The latter
proposed a procedure to find a prior distribution with an invariance property with respect to
parameterization. In the univariate case, Jeffreys’ prior is defined by:

π(θ) ∝
√

I(θ)

where I is Fisher’s information matrix (as a reminder, I(θ) = −EY |θ
[

∂2 log(f(y|θ))
∂θ2

]
). Jeffreys’

prior is therefore invariant for bijective transformations of the parameters. That is, if we
consider another parameterization γ = g(θ) (for which there is reciprocal bijection g−1), we
always get:

π(γ) ∝
√

I(γ)
while π(γ) still corresponds to the same prior on θ.

In the multidimensional case (the most common) Jeffreys’ prior is defined as:

π(θ) ∝
√

|I(θ)|

where |I(θ)| is the determinant of Fisher’s information matrix I(θ). However this method is
rarely used in practice because on the one hand calculations can be hard, and on the other hand
it can give somewhat curious results. Indeed, in the case of a normal likelihood where we have
2 parameters θ and σ for example, Jeffreys’ multidimensional prior is 1/σ2, which is different
from π(σ) = 1/σ obtained in the unidimensional case. . . In practice the tendency is generally
to apply Jeffreys’ prior separately for each parameter, and to define the joint distribution a
priori by multiplying the priors for each parameter (thus making an independence hypothesis
a priori). For the normal example with two parameters, we get π(θ, σ) = 1/σ. But we notice
it’s not really Jeffreys’ two-dimensional prior anymore. . .
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Diffuse priors

In practice, a very common alternative for giving a weakly informative prior is the use of
parametric distribution (such as the normal distribution) with very large variance parameters
(which approaches the uniform law while avoiding the problem of improper distributions).

2.4 Going further

2.4.1 Hyper-priors & hierarchical models
In classical Bayesian modeling, we consider two hierarchical levels: first π(θ), then f(y|θ). It
is possible to add a level by also putting a prior onto the η parameter of π(θ), called a hyper-
parameter: π(θ|η). Applying the Bayesian approach, we can give this hyper-parameter a prior
distribution, then called hyper-prior and denoted h(η). The distribution is:

p(θ|y) = f(y|θ)π(θ)
f(y) =

∫
f(y|θ)π(θ|η)h(η)dη

f(y) = f(y|θ)
∫

π(θ|η)h(η)dη

f(y)

We notice that this hierarchical modeling with three hierarchical levels is equivalent to a
Bayesian modeling with two levels and a prior distribution which becomes: π(θ) =

∫
π(θ|η)h(η)dη.

Nevertheless, this hierarchical construction can facilitate the modeling stage as well as the elic-
itation of the prior. It is even possible to build models with more than three levels, considering
that the distribution of η depends itself on “hyper-hyper-parameters”, and so on. . . A typical use
case for hierarchical Bayesian modeling is the inclusion of random effects in the linear model.
Latent class models are another example. We remark here that the boundary between frequen-
tist and Bayesian modeling is becoming thinner, and that it is mainly a matter of interpretation
of the model parameters (and therefore of the results).

If we go back once more to the historical example of birth sex with a Beta prior, one can
propose two Gamma hyper-priors for α and β:

α ∼ Gamma(4, 0.5)
β ∼ Gamma(4, 0.5)
θ|α, β ∼ Beta(α, β)

Yi|θ
iid∼ Bernoulli(θ)

2.4.2 Empirical Bayes
The empirical Bayes strategy consists of eliciting the prior according to its empirical marginal
distribution, and therefore to estimate the prior from the data. This means giving ourselves
hyper-parameters and trying to estimate them through frequentist methods (for example by
maximum likelihood) by η̂, before plugging this estimate into the prior distribution and thus
obtaining the posterior distribution p(θ|y, η̂). This empirical Bayes approach that combines
Bayesian and frequentist may seem to go against the idea of an a priori, since the data are
already used to define the prior. Nevertheless, one can see the empirical Bayes strategy as an
approximation of the completely Bayesian approach. Compared to a weakly informative prior
it gives a more concentrated posterior (decreased variance), at the cost of introducing a bias
in the estimate (we use the data twice !). This approach illustrates once again the trade-off
between bias and variance that is typical in any estimation procedure.
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2.4.3 Sequential Bayes
Note that Bayes’ theorem can be used sequentially. Omitting the denominator (which does
not depend on θ) one can write: p(θ|y) ∝ f(y|θ)π(θ). If y = (y1, y2), one gets: p(θ|y) ∝
f(y2|θ)f(y1|θ)π(θ) ∝ f(y2|θ)p(θ|y1). The posterior knowing y1 becomes the prior for the new
observation y2. So we can update the information on θ as the observations arrive.

2.5 Bayesian Inference
Once Bayesian modeling is complete, the posterior distribution (obtained by choosing the
prior distribution, the sampling model and the observed data) is available. This distribution
contains all the information on θ conditionally on the model and the data. One can nevertheless
be interested in summaries of this distribution, for example in a central parameter of this
distribution such as its expectation, its mode or its median. . . Those are akin to point estimators
obtained by frequentist analysis.

2.5.1 Decision theory
Statistical decision theory is generally used when estimating an unknown parameter θ. The
decision then deals with the choice of a point estimator θ̂. In order to determine the optimal
θ̂, a cost function is defined (with a value in [0, +∞[) representing the penalty associated
with the choice of a particular θ̂ (that is, the associated decision). In order to determine the
optimal θ̂ (i.e. the optimal decision) one will want to minimize the chosen cost function. Note
that a large number of different cost functions are possible, and that each of them results in
a different optimal point estimator, and therefore a specific optimal decision. This adds an
additional layer of subjectivity to an analysis, and it is good practice to perform a sensitivity
analysis to quantify the impact of the cost function choice on the result of an analysis.

2.5.2 Point estimate
We now present several point estimators widely used in Bayesain inference.

Posterior mean

The posterior mean is defined as:

µP = E(θ|y) = Eθ|y(θ)

It is the estimator with the smallest posterior variance (in the Bayesian meaning: Eθ|y(θ − θ̂)2).
It is therefore the optimal point estimator in the sense of the quadratic error (quadratic loss
function). Note that the calculation of this expectation is not always easy, because it assumes
the calculation of an integral. . .

Maximum A Posteriori

The maximum has been used a lot, especially since it is easier (or at least less difficult) to
compute. Indeed, it does not require any integral calculation, but just a simple maximization
of f(y|θ)π(θ) (because the denominator f(y) does not depend on θ). This mode estimator is
called the maximum a posteriori (often denoted MAP).
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BF Strength of evidence
< 1 Negative (supports H0)

1 to 101/2 Barely worth mentioning
103/2 to 10 Substantial
10 to 103/2 Strong

103/2 to 100 Very strong
> 100 Decisive

Table 2.3 – Jeffreys’ scale for interpreting Bayes factors

Posterior median

The median is also a possible summary of the posterior distribution. As its name suggests, this
is the median of p(θ|y). This is the optimal point estimator in the sense of the absolute error
(linear loss function) |θ − θ̂|.

2.5.3 Credibility interval
Finally we can define a set of values with a high posterior probability of occurrence. Such a set is
called a credibility set. If the posterior distribution is unimodal, such a set is an interval. For
example, a 95% credibility interval is an interval [tinf ; tsup] such that

∫ tsup

tinf
p(θ|y) dθ = 0.95.

We’re usually interested in the shortest possible 95% credibility interval (also called Highest
Density Interval).

Let us recall here the interpretation of a frequentist confidence interval at a 95% level,
which is interpreted as follows, with respect to all the intervals of this level that could have
been observed:

95% of the intervals computed on all possible samples (all those that can be observed)
contain the true value θ

N one cannot interpret a realization of a confidence interval in probabilistic terms ! It is a
common mistake. . . The credibility interval is interpreted much more naturally, as an interval
that has a 95% chance of containing θ (for a 95% level, obviously)

2.5.4 Bayes Factor
The Bayes Factor is the marginal likelihood ratio between two hypotheses (e.g. H1 and H0):

BF10 = f(y|H1)
f(y|H0)

It is interpreted in terms of favored support for either hypothesis from the observed data y.
It can be used in a Bayesian analysis to perform model selection, and notably to quantify
the benefit of incorporating one additional parameter in the model. Jeffreys proposed a scale
for interpreting the values of Bayes factors that is shown in Table 2.3. The posterior odds
between those two hypotheses can then be computed as:

p(H1|y)
p(H0|y) = BF10 × p(H1)

p(H0)
If the prior probability is the same for both hypotheses p(H0) = p(H1), then the posterior odds
are equal to the Bayes Factor.
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2.5.5 Asymptotic – and frequentist– properties of the posterior dis-
tribution

Doob’s convergence theorem

A very interesting result is the asymptotic behavior of the posterior distribution under certain
hypotheses (iid observations, densities three times differentiable, existence of moments of order
2). There is a first result, Doob’s convergence theorem, which ensures that the distribution
concentrates around the true value of the parameter when n → ∞. We can note it (convergence
in distribution):

p(θ|yn) L→ δθ∗
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Bernstein-von Mises Theorem

A richer result characterizes the asymptotic distribution of θ: the Bernstein-von Mises the-
orem (also called Bayesian central-limit theorem). For a large n the posterior distribution
p(θ|y) can be approximated by a normal distribution centered at the mode θ̂ and for variance
the inverse of the Hessian (i.e. the second derivative) of p(θ|y) with respect to θ taken at the
mode θ. One can then write the following approximation:

p(θ|y) ≈ N (θ̂, I(θ̂)−1)

This results is important for two reasons:
— it can be used to explain why Bayesian methods and frequentist procedures based on

maximum likelihood give, for large enough n, very close results. Thus, in dimension
1, the asymptotic credibility interval is [θ̂

√
I(θ̂)−1], and compared to the frequentist

confidence interval constructed from the estimator’s asymptotic distribution: [θ̂MLE ±
1.96

√
I(θ̂MLE)−1] (where I(θ̂MLE) is here the observed Fisher information matrix, and

corresponds to the previous definition for uniform priors). We note that they are both
identical (for a uniform prior). For these priors, we note that we also have θ̂ = θ̂MLE (and
even if we don’t take uniform priors, the estimators and intervals are very close, since
the weight of the prior becomes negligible when n → ∞). The theoretical interpretation
of these intervals obviously remains different.
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— it means that we can approximate the posterior distribution by a normal distribution,
whose mean and variance we can calculate simply using the MAP, and thus facilitate
numerical calculations of Bayesian inference.

2.6 Conclusion and perspective on Bayesian modeling

2.6.1 Essential concepts
1 Bayesian modeling:

θ ∼ π(θ) the prior

Yi|θ
iid∼ f(y|θ) sampling model

2 Bayes’ formula:
p(θ|y) = f(y|θ)π(θ)

f(y)
where p(θ|y) is the posterior distribution, f(y|θ) is the likelihood (inherited from the
sampling model), π(θ) is the prior distribution on the parameters θ and f(y) =

∫
f(y|θ)π(θ)

is the marginal distribution of the data, i.e. the normalizing constant (with respect to
θ).

3 The posterior distribution is given by:

p(θ|y) ∝ f(y|θ)π(θ)

4 Weekly informative priors

5 Posterior mean, MAP, and credibility intervals

2.6.2 Usefulness of the Bayesian approach as an analytical tool
The Bayesian framework is a statistical tool for data analysis, on the same footing as other
methodologies such as random forests, dimension reduction methods, latent class models, etc.
It is particularly useful when few observations only are available and frequentist methods do
not yield any or satisfactory results (e.g., logistic regression with very little or no event, i.e.
a lot or even only 0 in the case of extremely rare events) and/or when there is important
knowledge a priori that can be integrated into a model with few observations (for example
the model used by FiveThirtyEight to predict the results of the 2008 American elections in
each American state, in some of which only few polls were conducted, or in genomic studies
where the number of observations available for each gene is generally relatively small while
many genes are observed). In a few instances, the Bayesian framework allows the definition of
models with features that currently cannot be replicated in the frequentist framework, e.g. in
Bayesian nonparametrics. Like any statistical method, Bayesian analysis has advantages and
disadvantages that will be more or less important depending on the application considered.

20



Chapter 3

Numerical computation for Bayesian
analysis

3.1 Estimating the posterior distribution is often costly

3.1.1 Multidimensional parameters
In real-world data analysis, there are often several parameters. The vector of parameters is
thus θ = (θ1, . . . , θd). Bayes’ formula yielding the posterior distribution from both the prior
and the likelihood is still valid: it gives the joint posterior ditribuion of all the parameters. All
the information is encoded in this joint distribution. Unfortunately, its numerical calculation
is not always easy – especially for complex models (and in some models, even the likelihood is
difficult to compute). In addition, to obtain the joint posterior, it is also necessary to compute
the normalizing constant f(y) =

∫ d

Θ
f(θ)π(θ) dθ. An analytical solution is only available

in very special cases (especially when using conjugate distributions); and in the majority of
practical cases, this normalizing integral must in fact be calculated numerically. If θ is d-
dimension, this means calculating an integral of complexity d, which is difficult when d is large
(serious numerical problems appear as soon as d > 4).

An even more challenging issue arises when drawing conclusions from this joint distribution.
In general we are interested in the possible values for each parameter. This means that we need
the marginal, unidimensional distribution of each parameter. For a given parameter, to obtain
it, it is then necessary to integrate out the d − 1 other parameters from the joint distribution
(and this d times, for each of the d parameters). The problem is all the more difficult because
it is necessary to calculate these integrals for each possible value of the parameter, in order to
reconstitute the full posterior probability density. In complex problems, a sufficiently precise
calculation of these integrals seems unfeasible, and algorithms based on sampling simulations are
generally used, in particular the so-called Markov chain Monte Carlo (MCMC) algorithms.

3.1.2 Computational Bayesian statistics
Finding the posterior appears simple in theory thanks to Bayes’ theorem. But in practice the
calculation of the normalizing integral to the denominator is often extremely difficult. Finding
an analytical expression is only possible in a few very special cases, and numerical evaluation
can be just as difficult, especially when the dimension of the parameter space increases.

Computational Bayesian statistics is looking for solutions to be able to estimate the distri-
bution a posteriori, even when only the numerator in Bayes’ theorem is known (non-normalized
posterior). The main methods used are based on sampling algorithms to generate a sample dis-
tributed according to the posterior distribution. Among these algorithms, two main categories
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can be distinguished: (i) first, direct sampling methods, where a sample is generated from a sim-
ple (e. g. uniform) distribution and then transformed so that the result is distributed according
to the posterior; (ii) Monte Carlo Markov chain methods (MCMC), where a Markov chain is
constructed on the space of parameters whose invariant probability distribution matches the
posterior distribution.

3.1.3 Monte Carlo method
Monte Carlo (1955) was the encrypted name of a project by John von Neumann and Stanislas
Ulam at the Los Alamos Scientific Laboratory to use random numbers to estimate quantities
that are difficult (or impossible) to calculate analytically.

Using the law of large numbers, the aim is to construct a Monte Carlo sample to cal-
culate various functions using the probability distribution followed by this very sample. In-
deed E[f(X)] =

∫
x

f(x)p(x)dx. However, thanks to the law of large numbers, we have:

E[f(X)] = 1
N

f(x) provided that the x forms a iid sample according to p, the probability
distribution of X. We can thus calculate a certain number of integrals, provided we are able to
sample according to pX .

Example: Estimating π = 3.14 . . . with random numbers

Casino roulette (in Monte Carlo ?)
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A target with a 36 × 36 superimposed grid

1. The probabilty to be inside the disk is the ratio between the disk and the square surfaces:
pC = πR2

(2R)2 = π

4
2. Let us sample n points ((x11, x21), . . . , (x1n, x2n)) = (P1, . . . , Pn) in the 36×36 coordinate

system defined by the grid, thanks to the roulette which will générate the coordinate
one by one.

3. Put those samples onto the grid and count how many lands inside the disk.
4. Compute the ratio (i.e. the estimated probability of being inside the disk) :

p̂C =
∑

Pi ∈ circle

n

If n = 1000 and we find 786 points are in the circle, then we have π̂ = 4 × 786
1000 = 3.144.

We could further improve our estimate by increasing the resolution of our grid, and also by
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increasing our number n of sampled points. Indeed, we have lim
n→+∞

p̂C = pC according to the
law of large numbers.

We thus built a Monte Carlo sample, from which we can calculate many functions, including
π which corresponds to 4 times the probability of being in the circle !

Similarly, direct or MCMC sampling methods seek to construct a Monte Carlo sample
following the posterior distribution, in order to calculate a number of functions (posterior
averages, credibility intervals, etc) from it.

3.2 Direct sampling methods

3.2.1 Generation of random numbers according to usual probability
distributions

There are several ways to generate so-called random numbers according to known distribu-
tions. The vast majority of computer programs does not generate completely random numbers.
Rather, we are talking about pseudo-random numbers, which seem random but are actually
generated according to a deterministic process (which depends in particular on a “seed”).

The Uniform distribution

To generate a pseudo-random sample according to the uniform distribution on [0, 1], we can
give the example of the linear congruential algorithm (Lehmer, 1948):

1 Generate a sequence of integers yn such as:
yn+1 = (ayn + b) mod. m

2 xn = yn

m − 1
Choose a, b and m so that yn has a very long period and that (x1, . . . , xn)
can be considered as iid

where y0 is the so-called “seed”. We notice that we necessarily have 0 ≤ yn ≤ m−1. In practice
we take m very large (for example 219937, the default in R which uses the Mersenne-Twister
variation of this algorithm). In this course, we will not focus on the generation of pseudo-
random according to the uniform distribution on [0, 1], this is a tool that we will consider
reliable and that is used by the different algorithms detailed later on.

Other distributions

To sample according to the binomial distribution Bin(n, p), we can use the relationships
between the different usual distributions, starting from Ui ∼ U[0,1]:

Yi = 1Ui≤p ∼ Bernoulli(p)

X =
n∑

i=1
Yi ∼ Bin(n, p)

To sample according to the Normal law N(0.1), we can use the Box-Müller:
If U1 and U2 are 2 uniform variables ]0; 1] independent, then

Y1 =
√

−2 log U1 cos(2πU2),
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Y2 =
√

−2 log U1 sin(2πU2)

are independent and each follow the Normal law N(0.1).

3.2.2 Sampling according to a distribution defined analytically
Inverse transform sampling

Definition: Generalized inverse
For a function F defined on R, its generalized inverse is defined as

F −1(u) = inf{x; F (x) > u}

Property: Let F be the cumulative distribution function (cdf) corresponding to a given prob-
ability distribution, and let U be a random variable following a uniform distribution on [0, 1].
Then F −1(U) defines a random variable whose cumulative distribution function is F .

We deduce from the above property that if we know the distribution function of the law
according to which we want to simulate, and if we are able to reverse it, then we can generate
a sample according to this law from a uniform sample on [0, 1].

Example: We want to sample according to the exponential distribution of parameter λ.
We know the density function of the exponential probability distribution, which is f(x) =
λexp(−λx), as well as the corresponding cumulative distribution function (its integral), which
is F (x) = 1 − exp(−λx).

Let’s pose F (x) = u. One notices then that x = − 1
λ

log(1 − u) = F −1(u).

If u ∼ U[0,1], then x ∼ Exp(λ).

Acceptance-rejection method

The acceptance-rejection method consists in using an instrumental distribution g, which we
know how to sample from, in order to sample according to the target distribution f . The
general principle is to choose g close to f , to propose samples according to g, and to accept
some and reject others in order to obtain a sample according to the f distribution in the end.

Let f be the density function from a probability distribution of interest.
Let g be the density function from a probability distribution (from which
one knows how to sample) such that, for all x:

f(x) ≤ Mg(x)

While i ≤ n:
1 Sample xi ∼ g and ui ∼ U[0,1]

2 If ui ≤ f(xi)
Mg(xi)

, accept the draw:
yi := xi

else reject it and return to 1.

(y1, . . . , yn) iid∼ f
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Example of a proposal and a target distribution for the accept−reject algorithm

The smaller the M , the lower the rejection rate and the more efficient the algorithm is (in the
sense that it requires less iteration to obtain a sample size of n). It is therefore advisable to
choose g as close as possible to f , especially when the dimension increases (the impact of M
being all the more important then). Nevertheless, the proposal law will necessarily have heavier
queues than the target law, in all dimensions of the parameter space. Because of the scourge
of size, when the number of parameters increases, the acceptance rate decreases very quickly.

Exercise 1 : Construct a pseudo sample of size n according to the following discrete law(multinomial
distribution with m elements {x1, . . . , xm}):

p1δx1(x) + p2δx2(x) + . . . pmδxm(x) with
m∑

i=1
pi = 1

where δy(x) = 1 if x = y, and 0 otherwise.

Exercise 2 : Using the inversion method, generate a sample size according to a Cauchy’s law
(whose density is f(x) = 1

π(1 + x2)), knowing that arctan′(x) = 1
(1 + x2) .

Exercise 3 : Write an acceptance-rejection algorithm to simulate the realization of a sample size
n of a normal law N(0.1) using a Cauchy law as a proposal. Find the optimal M value.

3.3 MCMC algorithms
The principle of MCMC algorithms is to build a Markov chain visiting the parameter space,
whose invariant probability law is the posterior distribution.

3.3.1 Markov chains: a primer
A (discrete-time) Markov chain is a discrete-time stochastic process. It can be defined as a
sequence of random variables X0, X1, X2, X3, . . . (all defined on the same space) with the
Markov property (“memoryless”):

p(Xi = x|X0 = x0, X1 = x1, . . . , Xi−1 = xi−1) = p(Xi = x|Xi−1 = xi−1)

The set of possible values for Xi is called state space and is noted E.
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Remark: Continuous-time Markov chains can also be defined, then requiring discrete state
space, but such mathematical objects are beyond the scope of this course.

A Markov chain is defined by 2 parameters:
1 its initial distribution p(X0)
2 its transition probabilities T (x, A) = p(Xi ∈ A|Xi−1 = x)

Remark In the following, we will only consider Markov chains homogeneous, i. e. who checks:

p(Xi+1 = x|Xi = y) = p(Xi = x|Xi−1 = y)

Property: A Markov chain is said to be irreducible if all sets of non-zero probability can be
reached from any starting point (i.e. any state is accessible from any other).
Property: A Markov chain is said to be recurrent if the trajectories (Xi) pass an infinite
number of times in any set of non-zero probability of the state space.
Property: A Markov chain is said to be aperiodic if nothing induces periodic behavior of the
trajectories.

Definition: A probability distribution p̃ is called invariant law (or stationary law) for a
Markov string if it verifies the following property: if Xi follows p̃, then Xi+1 (and the following
items) are necessarily distributed according to p̃.
Remark: A Markov chain can admit several stationary laws.
Ergodic theorem: A positive irreducible and recurrent Markov chain (i.e. the average return
time is finite) admits a single invariant probability distribution p̃ and converges almost certainly
towards it (if it is also aperiodic, then it converges in law towards p̃).

Example: Doudou the hamster
Let us assume that Doudou’s state (a hamster) every minute follows a Markov chain with three
possible states: sleep (S), eat (E), or work out (W). Thus, its state in one minute depends only
on its current state, and not what it was doing before. Suppose that the transition probability
matrix is then the following:

P =


Xi/Xi+1 S E W

S 0.9 0.05 0.05
E 0.7 0 0.3
W 0.8 0 0.2


1) Is the Markov chain irreducible ? recurrent ? aperiodic ?
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Exemple :
Supposons que l'état d'un rongeur suive à chaque minute un processus de Markov à trois états
(dormir (D), manger (M), faire de l’exercice (E)). Ainsi, son état dans une minute dépend de
son état actuel, et pas des minutes précédentes. Supposons que la matrice des probabilité de
transition soit la suivante :

1) Selon vous, la chaîne est-elle irréductible? Récurrente? Apériodique?
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2) Suppose that Doudou is now asleep. What will it be doing in 2 minutes ? in 10 minutes ?

x0 =

1
0
0


T

x2 = x0P
2 =

0.885
0.045
0.070


T

x10 = x2P
8 = x0P

10 =

0.884
0.044
0.072


T

3) Suppose now that Doudou is working out. What is he going to be doing in 10 minutes ?

x0 =

0
0
1


T

x10 = x0P
10 =

0.884
0.044
0.072


T

Here, since the chain is aperiodic, recurrent and irreducible, therefore there is a stationary
distribution: p̃ = p̃P .

3.3.2 MCMC sampling
MCMC algorithms: general principle

The general principle of MCMC algorithms is as follows: to produce an acceptable approxima-
tion of an integral – or other functional – of a distribution of interest (such as the posterior),
one only needs to sample a Markov chain whose limit distribution is this very distribution of
interest (i.e. the posterior), and then to apply the Monte Carlo method to it.

A twofold convergence is thus required:
1 the Markov chain must first converge to its stationary distribution: ∀X0, Xn

L−−−−→
n→+∞

p̃

2 once this stationary distribution is reached, the Monte Carlo convergence must also
happen:
1
N

N∑
i=1

f(Xn+i) −−−−→
N→+∞

E[f(X)]

Markov chain convergence︷ ︸︸ ︷
X0 → X1 → X2 → · · · → Xn →

Monte Carlo sample︷ ︸︸ ︷
Xn+1 → Xn+2 → · · · → Xn+N

MCMC algorithms uses an acceptance-rejection framework:

1 Initialise x(0)

2 For t = 1 . . . n + N :
1. Propose a new candidate y(t) ∼ q(y(t)|x(t−1))
2. Accept y(t) with probability α(x(t−1), y(t)) :

x(t) := y(t)

if t > n, “save” x(t) (as part of the final Monte Carlo sample)
where q is the instrumental distribution for proposing new samples and α is
the acceptance probability.

General organisation of MCMC algorithms
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For the instrument proposal distribution q, there is not universal optimal choice, but an infinity
of possible distributions (some better than others). In order to ensure convergence towards the
targeted distribution p̃: (i) the support of q must cover all of the support values of p̃, (ii) q
must not generate periodic values. Ideally, q is chosen so that its calculation is simple and fast
(for example, you can choose q to be symmetric).

Metropolis-Hastings algorithm

The Metropolis-Hastings is the workhorse of MCMC algorithms: it is a very simple and general
algorithm for sampling according to uni- or multi-dimensional distributions.

1 Initialise x(0)

2 For t = 1 . . . n + N :
1. Sample y(t) ∼ q(y(t)|x(t−1))
2. Compute the acceptance probability

α(t) = min
{

1,
p̃(y)

q(y(t)|x(t−1))

/
p̃(x(t−1))

q(x(t−1)|y(t))

}
3. Acceptance-rejection step:

Sample a value u(t) ∼ U[0,1]

x(t) =

y(t) if u(t) ≤ α(t)

x(t−1) else

One can reformulate the acceptance probability α(t) as: α(t) = min
{
1, p̃(y(t))

p̃(x(t−1))
q(x(t−1)|y(t))(t)

q(y(t)|x(t−1))

}
. It

can thus be computed knowing p̃ only up to a constant (since it simplifies in the above ratio).
Note that this is particularly useful when the target p̃ is actually the posterior distribution of
some Bayesian model.

There are particular cases where the computation of α(t) can be simplified, such as:
• Independant Metropolis-Hastings: q(y(t)|x(t−1)) = q(y(t))
• Random walk Metropolis-Hastings: q(y(t)|x(t−1)) = g(y(t) − x(t−1))

If g is symetric (g(−x) = g(x)), the computation of the acceptance probability α(t) then

simplifies: p̃(y(t))
p̃(x(t−1))

q(y(t)|x(t−1))
q(x(t−1)|y(t)) = p̃(y(t))

p̃(x(t−1))
((((((((
g(y(t) − x(t−1))
((((((((
g(x(t−1) − y(t))

= p̃(y(t))
p̃(x(t−1))

The Metropolis-Hastings algorithm is a very simple and general algorithm for one-dimensional
or multi-dimensional sampling. The choice of the instrumental distribution is crucial – but dif-
ficult – and has a considerable impact on the algorithm’s performance (e.g. a high rejection
rate often implies very long computation times). Moreover, it is an algorithm that becomes
ineffective when the dimension of the problem becomes too large. The simulated annealing
algorithm and the Gibbs sampler are algorithms that partially overcome some of these limits.

Simulated annealing

In order to go beyond some of the limitations of the Metropolis-Hastings algorithm, the accep-
tance probability computation can be changed during the algorithm progression. The idea is
to first have a high acceptance probability α(t), in order to explore the whole state space (i.e.
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“travel far”), and then to decrease it when the algorithm converges so that the new accepted
values are concentrated around the optimal mode. This is done by introducing a “temperature”
into the Metropolis-Hastings algorithm, which varies at each iteration and is noted T (t) :

1 Initialise x(0)

2 For t = 1 . . . n + N :
a. Sample y(t) ∼ q(y(t)|x(t−1))
b. Compute the acceptance probability

α(t) = min

1,

(
p̃(y(t))

p̃(x(t−1))
q(x(t−1)|y(t))
q(y(t)|x(t−1))

) 1
T (t)


c. Acceptance-rejection step: sample a value u(t) ∼ U[0,1]

x(t) :=

y(t) if u(t) ≤ α(t)

x(t−1) else

For example, one can use T (t) = T0

(
Tf

T0

) t
n

with T0 the initial temperature, n the number
of iterations above which one thinks to reach convergence, and Tf the temperature after n
iterations. This algorithm is particularly useful when local optimums are present. An example
of possible temperature values could be T0 = 10 and Tf = 0.1 (but appropriate values depend
on the actual scale of the problem).

Gibbs sampler

When the dimension (of x) increases, it becomes very difficult to propose probable values
in algorithms using the acceptance-rejection strategy. The idea behind the Gibbs sampler
is to generate x coordinate by coordinate, while conditioning on the last values obtained.
Therefore, x must admit a decomposition such that x = (x1, . . . , xd), and the distributions
p(xi|x1, . . . , xi−1, xi+1, . . . , xd) must be known and easy to sample from. Unlike the Metropolis-
Hastings algorithm, the Gibbs sampler does not really rely on an acceptance-rejection strategy
but accepts all sampled proposals (α = 1). The proposal distributions are imposed here: they
are the conditional probability distributions of each coordinate. The Gibbs sampler is thus a
coordinate-wise update algorithm:

1 Initialise x(0) = (x(0)
1 , . . . , x

(0)
d )

2 For t = 1 . . . n :
1. sample x

(t)
1 ∼ p(x1|x(t−1)

2 , . . . , x
(t−1)
d )

2. sample x
(t)
2 ∼ p(x2|x(t)

1 , x
(t−1)
3 , . . . , x

(t−1)
d )

3. . . .

4. sample x
(t)
i ∼ p(xi|x(t)

1 , . . . , x
(t)
i−1, x

(t−1)
i+1 , . . . , x

(t−1)
d )

5. . . .

6. sample x
(t)
d ∼ p(xd|x(t)

1 , . . . , x
(t)
d−1)

Remark: if conditional distributions are unknown for some coordinates, they can be sampled by
introducing an acceptance-rejection step for this coordinate only. Such algorithms are known
as Metropolis-within-Gibbs.
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3.4 Use of MCMC algorithms for Bayesian inference in
practice

The implementation of Metropolis-Hastings, Gibbs, or Metrolpolis within Gibbs algorithms
thus enable one to sample according from the posterior distribution of a Bayesian model. In
particular, the prior can be used as the porposal while the target distribution is the posterior:
x is then replace by θ, and p̃ by p(θ|y), respectively. A number of software programs such as
JAGS(http://mcmc-jags.sourceforge.net/), STAN (http://mc-stan.org/) or WinBUGS
(https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/) offer an
implementation of such algorithms for a great number of modeling strategies and can be applied
without having to (re)program the MCMC algorithm itself.

The BUGS project (Bayesian inference Using Gibbs Sampling: https://www.mrc-bsu.
cam.ac.uk/software/bugs/) was initiated in 1989 by the BioStatistics Unit of the MRC (Med-
ical Research Council) at the University of Cambridge (UK) to provide flexible software for the
Bayesian analysis of complex statistical models using MCMC algorithms. Its most famous
implementation is WinBUGS, a point-&- click software available under the Windows operating
system. OpenBUGS is an implementation running under Windows, Mac OS or Linux. JAGS
(Just another Gibbs Sampler) is another, more recent, implementation that also relies on the
BUGS language. A very useful resource is the JAGS user manual (http://sourceforge.net/
projects/mcmc-jags/files/Manuals/3.x/jags_user_manual.pdf). Finally, we should also
note the software STAN, recently developed at Columbia University, which is similar to BUGS
only in its interface, relying on innovative MCMC algorithms, such as Hamiltonian Monte Carlo
or Variational Bayes.

3.4.1 MCMC convergence
Sampling according to the posterior with an MCMC algorithm features 2 steps:

The burn-in phase: The phase de chauffe (burn-in) : this warm-up phase corresponds to
the first iterations of the MCMC algorithm, which should not be retained in the Monte Carlo
sample analysis. Indeed, these do not come from distribution. This phase therefore corresponds
to the time needed for the Markov chain to converge towards its stationary law. Its length varies
from model to model. There are no consequences for taking too long a heating phase, apart
from its computational burden.

The sampling phase: it must be long enough to allow a good estimate of the posterior
distribution, especially for low probability ranges.

The mathematical properties of Markov chains guarantee the convergence of MCMC al-
gorithms, but do not give an indication of the number of iterations required to achieve this
convergence. While there is no way to guarantee this convergence in finite time, there are
a number of tools available to diagnose the non-convergence of a Markov chain towards its
stationary law. They must therefore be used when interpreting the outputs of an MCMC
algorithm to avoid situations where the chain has not converged.

One way to monitor the convergence of an MCMC sampling algorithm is to generate several
strings (in parallel and independently) with different initial values. If the algorithm works, then
these different (Markov) strings must converge to the same stationary distribution (the posterior
distribution). After enough iterations, it should be impossible to distinguish between these
different channels. For each string, the n first values are considered to belong to the burn-in
phase of the algorithm, necessary for the Markov string to first converge to its stationary law
from the initial values. They are therefore not retained, and we are interested in the following
N observations that will constitute our Monte Carlo samples.
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Monte Carlo error

The Monte Carlo error characterizes the uncertainty introduced by MCMC sampling. For a
given parameter, it quantifies the variability expected in its estimation if we would generate
several (Markov) chains, i.e. several posterior Monte Carlo samples (thanks to an MCMC
algorithm, with different initializations and each time the same number N of iterations). The
Monte Carlo standard-errors give an idea of this variability. If the standard errors have very
different values from one chain to another, then the sampler must be run for longer. The exact
length of sampling required to obtain a given standard error will depend on the efficiency and
mixing of the sampler. It is important that this Monte Carlo error be small with respect to the
estimated variance of the posterior distribution.

Gelman-Rubin statistic

One way to evaluate the convergence of an MCMC sampler is to compare the variation between
different chains to the variation within the same chain after a number of iterations. If the
algorithm has converged, the between-chains variation should be close to zero.

Let θ[c] = (θ(1)
[c] , . . . , θ

(N)
[c] ) the N -sample obtained from chain c = 1, . . . , C of an MCMC

algorithm sampling θ. The Gelman-Rubin statistic is then:

R =
N−1

N
W 1

N
B

W

with B = N
C−1

∑C
c=1(θ̄[C] − θ̄·)2 the between-chains variance, θ̄[c] = 1

N

∑N
t=1 θ

(t)
[c] , θ̄· = 1

C

∑C
c=1 θ̄[C],

and W = 1
C

∑C
c=1 s2

[c] the within-chain variance, s2
[c] = 1

N−1
∑N

t=1(θ
(t)
[c] − θ̄[C])2. When N → +∞

while B → 0, R gets close to 1. One will thus want to run an MCMC algorithm for a sufficient
number of iterations in order to reach a value of R close enough to 1, for instance between 1
and 1.01 (or 1.05).

The Gelman-Rubin statistic is a ratio (therefore without unit) which makes it a summary
that can be interpreted simply and in the same way for any MCMC sampler and any Bayesian
model. Another advantage is that it does not require any tuning parameter (unlike Monte
Carlo errors). The Gelman-Rubin statistic is therefore a good way to diagnose the convergence
of an MCMC algorithm. Nevertheless, its calculation may be unstable and it cannot guarantee
convergence on its own. It is a general tool, for the general monitoring of a Markov chain.

Note that other statistics (e.g. Geweke’s statistic) are sometimes used instead of, or in
addition to, Gelman-Rubin’s – which remains the most popular.

Graphical diagnostics

In addition to the Gelman-Rubin statistic, a number of graphical diagnostics can be used to
evaluate the non-convergence of an MCMC algorithm:

• the trace: refers to the representation of the successive values of the string. When more
than one independent chain is generated from different initializations, the traces of the
different chains must stabilize and overlap once convergence is achieved.

• non-parametric density estimators: according to Bernstein-von Mises’ convergence
theorem, the posterior distribution must be unimodal. For this we can use a non-
parametric (kernel) density estimator on the generated Monte Carlo sample to check
that the posterior distribution is indeed unimodal and sufficiently smooth.

• runing quantiles: similarly to the trace, the quantiles of the different chains must
stabilize and overlap during the different iterations once convergence is achieved.
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• Gelman-Rubin diagram: it represents the cumulative Gelman-Rubin statistic over
the iterations. Its level must quickly become very close to 1 (ideally < 1.01 or at least
< 1.05).

• autocorrelogram: when the Markov chain doesn’t “mix” very well, it can happen that
successive observations are highly correlated from one iteration to the next. This is
not a problem in itself, but it greatly reduces the effective sample size for the posterior
estimations. A common solution is to keep only one iteration out of 2, 5 or 10 (the more
correlated the retained samples, the more they spaced-out) using the thin parameter
(adjusting the spacing between the iterations kept in the MCMC sample).

• cross-correlation: One can also look at the correlation between our differences through
the different samples. Note that it is common to observe a strong correlation between cer-
tain parameters and that this is not necessarily indicative of a problem with the MCMC
algorithm (the frequentist approach also estimates correlations, sometimes significant,
between the parameters of a model using the Fisher information matrix).

Remark: it is common for diagnoses to be OK for some parameters, but not for others. This
is a subjective assessment, and the aim is that the majority of the criteria are met (or more or
less met), for a large majority of the parameters.

Effective sample size

In practice, a sample generated from an MCMC algorithm is iid only in very special cases.
Indeed, the Markov “memoryless” property generally leads to a correlation between the values
generated one after the other (dependent sampling). For a fixed sample size of N , this auto-
correlation decreases the amount of information available, and slows down the convergence of
the law of large numbers in the Monte Carlo method – compared to a purely independent
sample. An indicator to quantify this information is the effective sample size which is
calculated as follows:

ESS = N

1 + 2∑+∞
k=1 ρ(k)

where ρ(k) stands for auto-correlation with lag of rank k.
One solution used in practice to reduce these auto-correlation problems is not to retain

all the values successively sampled by an MCMC algorithm, but to space out the iterations
retained. For example, only the values sampled every 2, 5, or 10 iterations can be retained,
which will decrease the dependency within the generated Monte Carlo sample.

3.4.2 Inference from MCMC sampling
Estimation

Using MCMC algorithms, we’re able to obtain a Monte Carlo sample of the posterior distribu-
tion for a given Bayesian model. Thus one can use the Monte Carlo method to obtain different
posterior estimates: point estimates (posterior mean, posterior median, . . . ), credibility in-
tervals (in particular thanks to the package HDInterval which makes it possible to calculate
the narrowest credibility interval for a given level, i.e. the Highest Density Interval – HDI)),
cross-correlations between parameters, etc.
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Table 3.1 – Reference examples for graphical diagnostics of convergence
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Deviance Information Criterion (DIC)

The Deviance Information Criterion (DIC) relies on the deviance 1, which is defined as:
D(θ) = −2 log(p(θ|y)) + C where C is a constant. DIC is then defined as:

DIC = D(θ) + pD

where pD =
(
D(θ) − D(θ)

)
represents a penalty for the actual number of parameters. In

particular, the DIC makes it possible to compare different models on the same data (the lower
the DIC, the better the model), and to make modeling choices in the Bayesian context.

3.5 Other methods

3.5.1 Variational Bayes
Variational Bayes inference is an approximation technique of the full Bayesian approach that
focuses on the estimation of posterior means, and the uncertainty around them. It is based
on a parametric approximation of the posterior distribution that minimizes Kullback-Leibler’s
divergence from the true posterior distribution. The computation of the variational Bayes
solution thus amounts to a classical optimization problem, whose numerical computation is
generally very fast ; this can make it an appealing solution in big data problems. Nevertheless,
the quality of the variational approximation will depend on the adequacy of the chosen para-
metric model, for which there are no guarantees. In addition, this approach usually requires a
relatively extensive analytical study of the posterior distribution.

3.5.2 Approximate Bayes Computation (ABC)
Approximate Bayes Computation(ABC ) is another alternative to MCMC methods, which uses
the sampling model to avoid having to calculate the likelihood in the numerator of the Bayes
formula, by instead sampling observations according to the generative model of the data. One
then obtains a sample of the posterior distribution by keeping the θ parameter values, generated
from the prior distribution, having generated the samples sufficiently close to the actually
observed data. The difficulty of this approach lies in the formalization of “close enough”, which
induces an approximation compared to the exact Bayesian approach which would retain all the
values of θ (but whose computation cost by this method is then often very high).

1. M Plummer, Penalized loss functions for Bayesian model comparison, Biostatistics, 2008
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Chapter 4

Bayesian analyses in biomedical
applications: some real-world use cases

In this chapter, we cover the basics of three different real-world use cases, that illustrate settings
where the Bayesian approach can be particularly useful in biomedical science.

4.1 Post-mortem analysis of an under-powered random-
ized trial: a case-study

The randomized clinical trial EOLIA (Combes et al., NEJM, 2018) evaluated a new treatment
for severe acute respiratory distress syndrome (ARDS) by comparing the mortality rate after
60 days among 249 patients randomized between a control group (receiving conventional treat-
ment, i.e. mechanical ventilation) and a treatment group receiving ExtraCorporeal Membrane
Oxygenation (ECMO) – the new treatment studied. A frequentist analysis of the data con-
cluded to a Relative Risk of death of 0.76 in the ECMO compared to control (in Intent to
Treat), with CI95% = [0.55, 1.04] and the associated p-value of 0.09.

Group
ECMO Control

group size n 124 125
number of deaths at 60 days 44 57

Table 4.1 – Observed data in the EOLIA trial

Goligher et al. (JAMA, 2018) performed a Bayesian re-analysis of these data, further
exploring the evidence and how it can be quantified and summarized with a Bayesian approach.

4.2 Bayesian meta-analysis

4.2.1 Introduction to meta-analysis
A meta-analysis is an analysis of analyses, producing a single quantitative summary of stud-
ies answering the same research question. This can be particularly appealing, especially in
biomedical applications where medical therapies effects are often evaluated in multiple dif-
ferent studies. Ideally, one would pool individual observations from multiple studies (while
accounting for potential differences in the pooled experiments), but most of the times only
aggregated summary statistics estimates (often denoted as effect sizes) are available, alongside
some sort of uncertainty measures (generally the corresponding standard errors).
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Study Heterogeneity

One of the main difficulties for performing a meta-analysis is the variations of the observed
effects. Those can either come from within-study uncertainty or real heterogeneity in effect
size between the different studies. It is often the case that the different studies were conducted
on various populations, and therefore there is potential extra-variability between them. In
addition, studies are often of various sample sizes, a parameter which will also impact the
estimate and its variability.

Meta-analysis random-effects model

The random-effects model is the one of the most common approach to meta analysis. The
model can be written as follows:

yi ∼ N (θi, σ2
i )

θi ∼ N (µ, τ 2)

It can be seen as a hierarchical generalization of the fixed effect model yi ∼ N (µ, σ2
i ) which

assume the exact same mean for each study, while the random-effects models allow for between
study variability through the parameter τ : yi ∼ N (µ, σ2

i + τ 2).

4.2.2 Bayesian meta-analysis in practice
Meta-analysis: a perfect usecase for Bayesian analysis ?

A Bayesian approach to inference is very attractive in this context, especially when a meta-
analysis is based only on few studies. Indeed, the Bayesian approach allows for integrating
previous knowledge in the form of informative priors, and can mitigate some of the computa-
tionnal shortcomings encountered when dealing with few observations.

bayesmeta R package

The recent package bayesmeta has been implemented to perform such Bayesian meta-
analysis. It has a companion Shiny app availbale at: http://ams.med.uni-goettingen.de:
3838/bayesmeta/app/

4.2.3 Example dataset: Crins et al., 2014
In 2014, Crins et al. published a meta-analysis of controlled studies on interleukin-2 receptor an-
tagonists for pediatric liver transplant recipients. They estimated random-effects meta-analysis
models to assess (among other things) the incidence of i) acute rejection, ii) steroid-resistant re-
jection, iii) post-transplant lymphoproliferative disease, and iv) patient death, with or without
IL-2RA.

4.2.4 Going further
Scientific literature search

An very important part preceding any meta-analysis is to perform a rigorous and exhaustive
search of the scientific literature. This is no easy task and methologies and tools have been
developped to that end. An important aspect is that quite often estimates along with their
standard errors are not given right away, so one has to transform these oneself.
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Evidence synthesis

Meta-analysis is a method part of the broader field of evidence synthesis that aims at syn-
thesizing the scientific evidence on a particular subject. For instance, meta-regression is an
extension of meta-analysis to take into account the effect of covariates. Other approaches, such
as mechanistic modeling can also be considered for performing evidence synthesis.

Meta-analysis and more generally evidence synthesis methods are still active research do-
mains, and should be used with care and thoughfulness. For example, one of the debated
property of the random-effects model is that it will effectively reduce the weight of studies with
larger sample sizes (and smaller standard errors around their estimates) compared to the fixed
effect model (Serghiou & Goodman, JAMA, 2018), which can be argued as either being a bug
or a feature depending on the context (depending on how trustworthy are the studies).

4.3 Adaptative phase I/II trials: CRM and Bayesian
analysis

4.3.1 Introduction to Continuous Reassessment Methods (CRM)
for dose finding

Continuous Reassessment Methods (CRM) can be used in Phase I dose-escalation trials, where
the objective is to identify the optimal dose (i.e. with the greater efficacy while maintaining
an acceptable toxicity: the higher the dose the greater the efficacy but at the same time the
greater the toxicity). The idea is then to select iteratively the dose that the next recruited
patient will be given, based past accumulating observations from patients previously included.
This trial design was first introduced by O’Quigley at al. in 1990, and is being increasingly
used (although still in a minority of such trials).

A strong argument in favor of CRM is that they allow to treat each patient ethically by
always giving the dose that is best supported by the current evidence, while searching for the
optimal dose. The Bayesian approach is particularly well suited for such studies thanks to its
ability to easily formalize prior knowledge and its chain rule (i.e. sequential Bayes approach).

4.3.2 Critical reading of Kaguelidou et al., PLOS ONE, 2016
Kaguelidou et al. conducted a dose-finding study of Omeprazole on gastric pH in neonates
with Gastro-Esophageal Acid Reflux (GEAR) in order to determine the minimum effective
dose. They used a CRM design to select the drug dose as close as possible to the predefined
target level of efficacy (with a credibility interval of 95%).
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