Bayesian meta-analysis

Intro

Bayesian meta-analysis ●○○○○

Introduction to meta-analysis

What is a meta-analysis

"An analysis of analyses"

 \Rightarrow a single quantitative summary of studies answering the same research question

 $\underline{\mathsf{Ex:}}$ medical therapies effects are often evaluated in multiple different studies.

What is a meta-analysis

"An analysis of analyses"

 \Rightarrow a single quantitative summary of studies answering the same research question

 $\underline{\mathsf{Ex:}}$ medical therapies effects are often evaluated in multiple different studies.

 \Rightarrow pool individual observations from multiple studies ?

What is a meta-analysis

"An analysis of analyses"

 \Rightarrow a single quantitative summary of studies answering the same research question

 $\underline{\mathsf{Ex:}}$ medical therapies effects are often evaluated in multiple different studies.

⇒ pool individual observations from multiple studies ?

- ▲ potential differences in the pooled experiments
- $\underline{\wedge}$ only aggregated summary statistics estimates ("effect sizes") available
 - alongside uncertainty (e.g. standard errors)

Study Heterogeneity

Introduction to meta-analysis

 \wedge variations of the observed effects...

6/10

Study Heterogeneity

Introduction to meta-analysis

- \wedge variations of the observed effects...
 - within-study uncertainty, or
 - · real heterogeneity in effect size between the different studies

Study Heterogeneity

- ∧ variations of the observed effects...
 - within-study uncertainty, or
 - · real heterogeneity in effect size between the different studies

Often, different studies used different populations ⇒ potential extra-variability

+ different sample sizes \Rightarrow also impact the estimate and its variability

Meta-analysis random effects model

Common approach for meta-analysis:

 $\begin{aligned} y_i &\sim \mathcal{N}(\theta_i, \sigma_i^2) \\ \theta_i &\sim \mathcal{N}(\mu, \tau^2) \end{aligned}$

Meta-analysis random effects model

Common approach for meta-analysis:

 $y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$ $\theta_i \sim \mathcal{N}(\mu, \tau^2)$

Hierarchical generalization of the fixed effect model:

 $y_i \sim \mathcal{N}(\mu, \sigma_i^2)$

Meta-analysis random effects model

Common approach for meta-analysis:

 $\begin{aligned} y_i &\sim \mathcal{N}(\theta_i, \sigma_i^2) \\ \theta_i &\sim \mathcal{N}(\mu, \tau^2) \end{aligned}$

⇒ between study variability: $y_i \sim \mathcal{N}(\mu, \sigma_i^2 + \tau^2)$

Hierarchical generalization of the fixed effect model:

 $y_i \sim \mathcal{N}(\mu, \sigma_i^2)$

⇒ assume same average effect for each study

Bayesian meta-analysis 000●0

Introduction to meta-analysis

Bayesian meta-analysis in practice

Meta-analysis: a perfect usecase for Bayesian analysis ?

Bayesian meta-analysis 000●0

Introduction to meta-analysis

Bayesian meta-analysis in practice

Meta-analysis: a perfect usecase for Bayesian analysis ?

- few observations
- informative prior
- sequential

© B. Hejb<u>lum</u>

Introduction to meta-analysis Going further

Scientific literature search

∧ FIRST (!) exhaustive search of the scientific literature

Going further

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Introduction to meta-analysis Going further

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Evidence synthesis

Meta-analysis \in evidence synthesis e.g. meta-regression, mechanistic modeling, ...

Going further

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Evidence synthesis

Meta-analysis \in evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
 - Serghiou & Goodman, JAMA, 2018

Going further

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Evidence synthesis

Meta-analysis \in evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
 - Serghiou & Goodman, JAMA, 2018
 - a bug or a feature ?

Your turn !

Read ND Crins *et al.* Interleukin-2

Bayesian meta-analysis

Receptor Antagonist as Interference Liver Transplant Recipients: A Systematic Review and Meta-Analysis of Controlled Studies, *Pediatric Transplantation* 18(8):839, 2014. [D01:10.1111/petr.12362]

Practical: exercise 7