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Introduction
Estimating the posterior distribution

is often costly
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Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but
are key to its successful application
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Multidimensional parameters

Numerical integration – I

Real world applications: θ = (θ1, . . . ,θd)

⇒ joint posterior distribution of all d parameters

" hard to compute:

• complexe likelihood

• integrating constant f (y) = ∫
Θd f (y|θ)π(θ)dθ

• . . .

Analytical form rarely available
⇒ numerical computations: integral of d multiplicity

– difficult when d is big (numerical issues as soon as d > 4)
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Multidimensional parameters

Numerical integration – II

Even dimension 1 can be tough !

Example :
Let x1, . . . ,xn iid according to a Cauchy distribution C (θ,1)
with prior π(θ) =N (µ,σ2) (µ and σ known)

p(θ|x1, . . . ,xn) ∝ f (x1, . . . ,xn|θ)π(θ)

∝ e−
(θ−µ)2

2σ2
n∏

i=1
(1+ (xi −θ)2)−1

" normalizing constant has no analytical form ⇒ no analytical form for

this posterior distibution
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Multidimensional parameters

Marginal posterior distributions

Objective: draw conclusion based on the joint posterior distribution

⇒ probability of all possible values for each parameter (i.e. their marginal
distribution – uni-dimensional)

" Recovering all of the posterior density numerically requires the
calculation of multidimensional integrals for each possible value of the
parameter
⇒ a sufficiently precise computation seems unrealistic

Algorithms based on sampling simulations
especially Markov chain Monte Carlo (MCMC)
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Computational Bayesian statistics

Computational solutions

Bayes Theorem ⇒ posterior distribution

" in pratice:

• analytical form rarely available (very particular cases)

• integral to the denominator often very hard to compute

How can one estimate the posteriori distribution ?
⇒ sample according to this posterior distribution

• direct sampling

• Markov chain Monte Carlo (MCMC)
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Computational Bayesian statistics

Monte Carlo method

Monte Carlo : von Neumann & Ulam
(Los Alamos Scientific Laboratory – 1955)

⇒ use random numbers to compute quantities whose analytical
computation is hard (or impossible)

• Law of Large Numbers (LLN)

• so-called “Monte Carlo sample”

⇒ compute various functions from that sample distribution

Example : One wants to compute E[f (X)] =
∫

f (x)pX (x)dx

If xi
iid∼ pX , E[f (X)] = 1

N

N∑
i=1

f (xi) (LLN)

⇒ if one knows how to sample from pX , one can then estimate E[f (X)]
. . .
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Computational Bayesian statistics

Monte Carlo method: illustration

A casino roulette (in Monte Carlo ?)
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A 36×36 grid

1 The probability of being inside the disk while in the square: pC = πR2

(2R)2 = π
4

2 n points {(x11,x21), . . . , (x1n,x2n)} = {P1, . . . ,Pn} on the 36×36 grid
(generated with the roulette)

3 Count the number of points inside the disk
⇒ Compute the ratio (estimated probability of being inside the disk while in the

square): p̂C =
∑

Pi ∈ circle

n
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A 36×36 grid

1 The probability of being inside the disk while in the square: pC = πR2

(2R)2 = π
4

2 n points {(x11,x21), . . . , (x1n,x2n)} = {P1, . . . ,Pn} on the 36×36 grid
(generated with the roulette)

3 Count the number of points inside the disk
⇒ Compute the ratio (estimated probability of being inside the disk while in the

square): p̂C =
∑

Pi ∈ circle

n
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Computational Bayesian statistics

Monte Carlo method: illustration

A casino roulette (in Monte Carlo ?)
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A 36×36 grid

If n = 1000 and 786 points are inside the disk : π̂= 4× 786
1000 = 3.144

One can improve the estimate by increasing:
• the grid resolution, and also
• the number of points sampled n: lim

n→+∞ p̂C = pC =π/4 (LLN)
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Computational Bayesian statistics

Monte Carlo method: illustration
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A 36×36 grid

If n = 1000 and 786 points are inside the disk : π̂= 4× 786
1000 = 3.144

One can improve the estimate by increasing:
• the grid resolution, and also
• the number of points sampled n: lim

n→+∞ p̂C = pC =π/4 (LLN)

Monte Carlo sample ⇒ compute various functions
e.g. π = 4 × the probability of being inside the disk
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Computational Bayesian statistics

Your turn !

Practical: exercise 2
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Direct sampling methods
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Generating random numbers from common probability distributions

Random & pseudo-random numbers

There exist several ways to generate so-called “random” numbers
according to known distributions

NB: computer programs do not generate truly random numbers

Rather pseudo-random, which seem random but are actually generated
by a deterministic process (depending on a “seed” parameter).
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Generating random numbers from common probability distributions

Uniform sample generation

Linear congruential algorithm: sample pseudo-random numbers
according to the Uniform distribution on [0,1] (Lehmer, 1948)

1 Generate a sequence of integers yn such as:
yn+1 = (ayn +b) mod. m

2 xn+1 = yn+1
m−1

choose a, b and m so that yn has a long period & (x1, . . . ,xn) can be considered iid

with y0 the “seed”, i.e. the starting point

Remark: 0 ≤ yn ≤ m−1 ⇒ in practice m very large (e.g. 219937,
default in which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on [0,1] will be
considered reliable and used by the different sampling algorithms

Bayes for biomedical research II © B. Hejblum
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Generating random numbers from common probability distributions

Other usual distributions

Relying on relationships between the different usual distributions
starting from Ui ∼U[0,1]

Binomial Bin(n,p) :

Yi =1Ui≤p ∼Bernoulli(p)

X =
n∑

i=1
Yi ∼ Bin(n,p)

Normal N (0,1) (Box-Müller algorithm):

U1 and U2 are 2 independent uniform variables on [0;1]

Y1 =
√
−2logU1 cos(2πU2)

Y2 =
√
−2logU1 sin(2πU2)

⇒ Y1 & Y2 are independent random variables each following a N (0,1)
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Sampling according to a distribution defined analytically

Inverse transform sampling

Definition: For a function F defined on R, its generalized inverse is
defined as: F−1(u) = inf{x such that F(x) > u}

Property : Let • F be a cumulative probability distribution function
• U be a uniform random variable on [0,1]

Then F−1(U) defines a random variable whith cumulative probability
distribution function F

If 1 one knows F, the cumulative probability distribution function from
which to sample

2 one can invert F

⇒ then one can sample this distribution from a uniform sample on [0,1]

Bayes for biomedical research II © B. Hejblum
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Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

• density of the Exponential distribution: f (x) =λexp(−λx)

• its cumulative probability distribution function (its integral):
F(x) = 1−exp(−λx)

Let F(x) = u

Then x =

⇒ and if U ∼ U[0;1], then X = F−1(U) =− 1
λ log(1−U) ∼ E(λ).

Bayes for biomedical research II © B. Hejblum
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Sampling according to a distribution defined analytically

Your turn !

Practical: exercise 3

Bayes for biomedical research II © B. Hejblum
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Sampling according to a distribution defined analytically

Acceptance-rejection method

Use an instrumental distribution g (which we know how to sample from)
⇒ to sample from the target distribution f

The general principle is to choose g close to f and to propose samples
from g, to accept some and reject others to get a sample following f .

Let f be the targeted density function
Let g be a proposal density function (from which one knows how to sample)
such that, for all x: f (x) ≤ Mg(x)

While i ≤ n:
1 Sample xi ∼ g and ui ∼U[0,1]

2 If ui ≤ f (xi)
Mg(xi) , accept the draw:

yi := xi

else reject it and return to 1.

⇒ (y1, . . . ,yn) iid∼ f

Bayes for biomedical research II © B. Hejblum
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Sampling according to a distribution defined analytically

Acceptance-rejection: importance of the proposal

0.0

0.2

0.4

0.6

−5.0 −2.5 0.0 2.5 5.0

x

D
en

si
ty

 fu
nc

tio
n

Distribution

f (target)

g (instrumental)

M*g (boundary)

Example of a proposal and a target ditribution for the accept−reject algorithm

Remark: The smaller M, the greater acceptance rate
⇒ the more the algorithm is efficient at sampling from f (less iterations for a sample

size n)

So one wishes g the as close as possible to f !

" g will necessarily have heavier tail than the target
⇒ when the number of parameters increases, acceptance rate decrease svery rapidly

(curse of dimension)
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MCMC Algorithms
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Markov chains

Markov chain definition

Markov chain: discrete time stochastic process

Definition: a series of random variables X0, X1, X2, . . . (all valued over
the same state space) with the “memoryless” Markov property:

p(Xi = x|X0 = x0,X1 = x1, . . . ,Xi−1 = xi−1) = p(Xi = x|Xi−1 = xi−1)

The set E of all possible values of Xi is called the state space

2 parameters:
1 initial distribution p(X0)

2 tansition probabilities T(x,A) = p(Xi ∈ A|Xi−1 = x)

NB: only homogeneous Markov chains considered here:
p(Xi+1 = x|Xi = y) = p(Xi = x|Xi−1 = y)

Bayes for biomedical research II © B. Hejblum
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Markov chains

Markov chains properties

Property : a Markov chain is irreducible if all sets of non-zero
probability can be reached from any starting point (i.e. any state is
accessible from any other)

Property : a Markov chain is recurrent if the trajectories (Xi) pass an
infinite number of times in any set of non-zero probability of the state
space

Property : a Markov chain is aperiodic if nothing induces periodic
behavior of the trajectories
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Markov chains

Stationary law & ergodic theorem

Definition: A probability distribution p̃ is called invariant law (or
stationary law) for a Markov chain if it verifies the following property:

if Xi ∼ p̃, then Xi+j ∼ p̃ ∀j ≥ 1

Remark : a Markov chain can admit several stationary laws

Ergodic theorem (infinite space): A positive irreducible and recurrent
Markov chain admits a single invariant probability distribution p̃ and
converges towards it

Bayes for biomedical research II © B. Hejblum
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Markov chains

Markov chain example (discrete state space) – I

A Baby follows a Markov chain every minute with 3 states:
S sleep
E eat
D diaper change

⇒ its activity in 1min only depends on its current activity

Matrix of transition probabilities:

P =


Xi/Xi+1 S E D

S 0.9 0.05 0.05
E 0.7 0 0.3
D 0.8 0 0.2



1) Is the Markov chain irreducible ? recurrent ? aperiodic ?
2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?
3) Suppose now that Baby is getting his/her diaper changed. What about in
10 min ?
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Markov chains

Markov chain example (discrete state space) – II

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?

26

P

xn

=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ
+

2.008.0
3.007.0

05.005.09.0

E
M
D     
\x 1n

Chaîne de Markov
Exemple :
Supposons que l'état d'un rongeur suive à chaque minute un processus de Markov à trois états
(dormir (D), manger (M), faire de l’exercice (E)). Ainsi, son état dans une minute dépend de
son état actuel, et pas des minutes précédentes. Supposons que la matrice des probabilité de
transition soit la suivante :

1) Selon vous, la chaîne est-elle irréductible? Récurrente? Apériodique?

D

M

E

0.9

0.7

0.3

0.2

0.05

0.05

0.8

E

S D

2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?
3) Suppose now that Baby is getting his/her diaper changed. What
about in 10 min ?
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D

M

E

0.9

0.7

0.3

0.2

0.05
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0.8

E

S D

2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?

x0 =
1

0
0

T

P(X2|x0) = x0PP =
0.885

0.045
0.070

T

P(X10|x0) = x0P10 =
0.8839779

0.0441989
0.0718232

T

3) Suppose now that Baby is getting his/her diaper changed. What
about in 10 min ?
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Markov chains

Markov chain example (discrete state space) – II

3) Suppose now that Baby his/her diaper changed. What about in 10
min ?
. . .
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Markov chains

Markov chain example (discrete state space) – II

3) Suppose now that Baby his/her diaper changed. What about in 10
min ?

x′
0 =

0
0
1

T

P(X10|x′
0) = x′

0P10 =
0.8839779

0.0441989
0.0718232

T

Here, the Markov chain being aperiodic, recurrent and irreducible, there
is a stationary law: p̃ = p̃P.
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MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

⇒ sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:
1 the Markov chain must first converge to its stationary distribution:

∀ X0 , Xn
L−−−−−−→

n→+∞ p̃

2 then Monte Carlo convergence must also happen:
1

N

N∑
i=1

f (Xn+i) −−−−−→
N→+∞ E[f (X)]

Markov chain convergence︷ ︸︸ ︷
X0 → X1 → X2 →···→ Xn →

Monte Carlo sample︷ ︸︸ ︷
Xn+1 → Xn+2 →···→ Xn+N
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MCMC Sampling

General framework of MCMC algorithms

MCMC algorithms uses an acceptance-rejection framework

1 Initialise x(0)

2 For t = 1. . .n+N :

a Propose a new candidate y(t) ∼ q(y(t)|x(t−1))

b Accept y(t) with probability α(x(t−1),y(t)):
x(t) := y(t)

if t > n, “save” x(t) (as part of the final Monte Carlo sample)

where q is the instrumental distribution for proposing new samples
and α is the acceptance probability.
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MCMC Sampling

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution q
proposing new samples
⇒ infinite possibilities: some better than others

To guaranty convergence towards the target p̃ :
• the support of q has to cover the support of p̃

• q must not generate periodic values

NB: ideally q is easy and fast to compute
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MCMC Sampling

Metropolis-Hastings algorithm

1 Initialise x(0)

2 For t = 1, . . . ,n+N :
a Sample y(t) ∼ q(y(t)|x(t−1))

b Compute the acceptance probability

α(t) = min

{
1, p̃(y(t))

q(y(t)|x(t−1))

/
p̃(x(t−1))

q(x(t−1)|y(t))

}
c Acceptance-rejection step: sample u(t) ∼U[0;1]

x(t) =
{

y(t) if u(t) ≤α(t)

x(t−1) else

α(t) = min

{
1,

p̃(y(t))

p̃(x(t−1))

q(x(t−1)|y(t))

q(y(t)|x(t−1))

}
⇒ computable even if p̃ is known only up to a constant !
(like the posterior)
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MCMC Sampling

Metropolis-Hastings: particular cases

Sometimes α(t) computation simplifies:

• independent Metropolis-Hastings: q(y(t)|x(t−1)) = q(y(t))

• random walk Metropolis-Hastings: q(y(t)|x(t−1)) = g(y(t) −x(t−1))
If g is symmetric (g(−x) = g(x)), then:

p̃(y(t))

p̃(x(t−1))

q(y(t)|x(t−1))

q(x(t−1)|y(t))
= p̃(y(t))

p̃(x(t−1))
((((((g(y(t) −x(t−1))

((((((g(x(t−1) −y(t))
= p̃(y(t))

p̃(x(t−1))
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MCMC Sampling

Pro and cons of Metropolis-Hastings

very simple & very general

allow sampling from uni- or multi-dimensional distributions

choice of the proposal is crucial, but hard
⇒ huge impact on algorithm performances

quickly becomes inefficient dimension is too high

NB: a high rejection rate often implies important computation timings
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MCMC Sampling

Simulated annealing

Change α(t) computation during the algorithm:
1 α(t) must first be large to explore all of the state space
2 then α(t) must become smaller when the algorithm converges

1 Initialise x(0)

2 For t = 1, . . . ,n+N :
a Sample y(t) ∼ q(y(t)|x(t−1))

b Compute the acceptance probability

α(t) = min

{
1,

(
p̃(y(t))

p̃(x(t−1))
q(x(t−1)|y(t))
q(y(t)|x(t−1))

) 1
T(t)

}
c Acceptance-rejection step: sample u(t) ∼U[0;1]

x(t) :=
{

y(t) if u(t) ≤α(t)

x(t−1) else

Ex: T(t) = T0

(
Tf

T0

) t
n ⇒ particularly useful for avoiding local optima
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MCMC Sampling

Gibbs sampler

When the dimension ↗ ⇒ very hard to propose probable values

Gibbs samplers: re-actualisation coordinate by coordinate, while
conditioning on the most recent values (no acceptance-rejection)

1 Initialise x(0) = (x(0)
1 , . . . ,x(0)

d )

2 For t = 1, . . . ,n+N :
a Sample x(t)

1 ∼ p(x1|x(t−1)
2 , . . . ,x(t−1)

d )

b Sample x(t)
2 ∼ p(x2|x(t)

1 ,x(t−1)
3 , . . . ,x(t−1)

d )
c . . .
d Sample x(t)

i ∼ p(xi|x(t)
1 , . . . ,x(t)

i−1,x(t−1)
i+1 , . . . ,x(t−1)

d )
e . . .
f Sample x(t)

d ∼ p(xd|x(t)
1 , . . . ,x(t)

d−1)

NB: if the conditional distribution is unknown for some coordinates, an
acceptance-rejection step can be included for this coordinate only (Metropolis within
gibbs)
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MCMC Sampling

Your turn !

Practical: exercise 4
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MCMC in practice
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Software

MCMC softwares

• BUGS : Bayesian inference Using Gibbs Sampling
1989 MRC BSU University of Cambridge (UK)
⇒ flexible software for Bayesian analysis in complex statistical models
through MCMC algorithms

◦ WinBUGS: " clic + Windows only + stopped development
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/

◦ OpenBUGS: " clic + Windows only + Linux partially
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/

◦ JAGS: command line + interface
http://mcmc-jags.sourceforge.net/

• STAN: specialized for high-dimensional problems
http://mc-stan.org/

Bayes for biomedical research II © B. Hejblum
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Software

rjags

JAGS software is modern and efficient :

• relies on the BUGS language to specify a Bayesian model

• interface thanks to rjags package

• results analysis with packages

◦ coda

◦ HDInterval

Bayes for biomedical research II © B. Hejblum
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Convergence diagnostics

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a Monte
Carlo sample from the posterior distribution

⇒ requires Markov chain convergence towards its stationary law
(posterior distribution).

" No guaranty that this convergence will occur within finite time

⇒ study the convergence empirically for each analysis

 Initialisation of several Markov chains from different initial values

⇒ If convergence is reached, then these chains must be overlapping

Bayes for biomedical research II © B. Hejblum
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Convergence diagnostics

Graphical diagnostics

• Trace

• Posterior density

• Running Quantiles

• Gelman-Rubin diagram

• Auto-correlogram

Bayes for biomedical research II © B. Hejblum
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Convergence diagnostics

Trace

coda::traceplot()
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Iterations

chain traces must overlap and mix

↗ n.iter and/or ↗ burn-in
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Convergence diagnostics

Posterior density

coda::densplot()
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density must be smooth and uni-modal

↗ n.iter and/or ↗ burn-in
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Convergence diagnostics

Running quantiles

coda::cumuplot()
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Iterations

running quantiles must be stable across iterations

↗ n.iter and/or ↗ burn-in
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Convergence diagnostics

Gelman-Rubin statistic

• variation between the different chains
• variation within a given chain

If the algorithm has properly converged, the between-chain variation must be close to
zero

θ[c] = (θ(1)
[c] , . . . ,θ(N)

[c] ) the N-sample from chain number c = 1, . . . ,C

Gelman-Rubin statistic: R =
N−1

N W 1
N B

W
• between-chain variance: B = N

C−1
∑C

c=1(θ̄[C] − θ̄·)2

• chain average: θ̄[c] = 1
N

∑N
t=1 θ

(t)
[c]

• global average: θ̄· = 1
C

∑C
c=1 θ̄[C]

• within-chain variance: s2
[c] = 1

N−1
∑N

t=1(θ(t)
[c] − θ̄[C])2

N →+∞ & B → 0 ⇒ R → 1

Other statistics exist. . .
Bayes for biomedical research II © B. Hejblum
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Convergence diagnostics

Gelman-Rubin diagram

coda::gelman.plot()
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Gelman-Rubin statistic median must remain under the 1,01 threshold (or 1,05)

↗ n.iter and/or ↗ burn-in
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Convergence diagnostics

Effective Sample Size (ESS)

Markov property ⇒ auto-correlation between values sampled after one
another (dependent sampling) :

• reduce the amount of information available within a sample size n

• slows down LLN convergence

Effective sample size quantifies this:

ESS = N

1+2
∑+∞

k=1ρ(k)

where ρ(k) is the auto-correlation with lag k.

Space out saved samples (e.g. every 2, 5, or 10 iterations)
⇒ reduces dependency within the Monte Carlo sample generated
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Convergence diagnostics

Auto-correlation

coda::acfplot()
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auto-correlations must decrease rapidly to oscillate around zero

↗ thin and/or ↗ n.iter and/or ↗ burn-in
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Convergence diagnostics

Monte Carlo error

For a given parameter, quantifies the error introduced through the Monte
Carlo method
(standard deviation of the Monte Carlo estimator across the chains)

• That error must be consistent from one chain to another

• The larger N (number of iterations), the smaller the Monte Carlo error
will be

" This Monte Carlo error must be small with respect to the estimated
variance of the posterior distribution
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Inference

Estimation

Thanks to MCMC algorithms, one can obtain a Monte Carlo sample
from the posterior distribution for a Bayesian model

Monte Carlo method can then be used to get posterior estimates :

• Point estimates (posterior mean, posterior median, . . . )

• Credibility interval (shortest: Highest Density Interval – HDI with
package HDInterval)

• . . .
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Inference

Deviance Information Criterion (DIC)

Deviance is: D(θ) =−2log(p(θ|y))+C with C a constant

Deviance Information Criterion is then:

DIC = D(θ)+pD

where pD =
(
D(θ)−D(θ)

)
represents a penalty for the effective number of

parameters

⇒ DIC allows to compare different models estimated on the same data

the smaller the DIC, the better the model !

[M Plummer, Penalized loss functions for Bayesian model comparison, Biostatistics, 2008]
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Inference

Your turn !

Practical: exercise 5
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Questions ?
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