Bayesian Methods
for Biomedical Research

Part 1l: Bayesian computations

Boris Hejblum

https://bayesee.borishejblum.science

ISPED summer school
at the University of Bordeaux

June 4th 2024

Bayes for biomedical research 11 @© B. Hejblum


https://bayesee.borishejblum.science

Introduction
Estimating the posterior distribution
is often costly
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Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but
are key to its successful application

1/42
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Numerical integration — |

Real world applications: 8 = (61,...,0,)

= joint posterior distribution of all d parameters

A\ hard to compute:
* complexe likelihood

* integrating constant f(y) = f@)df(yle)n(e)dﬂ

Analytical form rarely available

= numerical computations: integral of d multiplicity
— difficult when d is big (numerical issues as soon as d>4)
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Numerical integration — |l

Even dimension 1 can be tough !

Example :

Let x,...,x, iid according to a Cauchy distribution € (0,1)
with prior m(0) = A (4,02) (1 and & known)

p(0|xlr---rxn) 9 f(xl;---yxn|0)”(0)

_O-p? n
xe 22 [[a+x-0)3"
i=1

A\ normalizing constant has no analytical form = no analytical form for

this posterior distibution
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Marginal posterior distributions

Objective: draw conclusion based on the joint posterior distribution

= probability of all possible values for each parameter (i.e. their marginal
distribution — uni-dimensional)

A\ Recovering all of the posterior density numerically requires the
calculation of multidimensional integrals for each possible value of the
parameter

= a sufficiently precise computation seems unrealistic
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Intro
[e]e] J

TR 3 1
[

Marginal posterior distributions

Objective: draw conclusion based on the joint posterior distribution

= probability of all possible values for each parameter (i.e. their marginal
distribution — uni-dimensional)

A\ Recovering all of the posterior density numerically requires the
calculation of multidimensional integrals for each possible value of the
parameter

= a sufficiently precise computation seems unrealistic

Algorithms based on sampling simulations
especially Markov chain Monte Carlo (MCMC) J

4/42
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Computational solutions

Bayes Theorem = posterior distribution
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Computational solutions

Bayes Theorem = posterior distribution

/\ in pratice:
* analytical form rarely available (very particular cases)

* integral to the denominator often very hard to compute
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Computational solutions

Bayes Theorem = posterior distribution

/\ in pratice:
* analytical form rarely available (very particular cases)

* integral to the denominator often very hard to compute

How can one estimate the posteriori distribution ?

= sample according to this posterior distribution
¢ direct sampling

* Markov chain Monte Carlo (MCMC)

5/42
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Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory — 1955)

= use random numbers to compute quantities whose analytical
computation is hard (or impossible)

@© B. Hejblum
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Monte Carlo method

Monte Carlo : von Neumann & Ulam
(Los Alamos Scientific Laboratory — 1955)

= use random numbers to compute quantities whose analytical
computation is hard (or impossible)

* Law of Large Numbers (LLN)
¢ so-called “Monte Carlo sample”

= compute various functions from that sample distribution

Example : One wants to compute E[f(X)] =ff(x)px(x)dx

i 1 X
If x: " px, ELF 001 = NZf(xi) (LLN)
i=1
= if one knows how to sample from pyx, one can then estimate E[f(X)]
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Monte Carlo method: illustration

7_estimation:

1D1gCoaiiguatinsaioaatiaiy

A casino roulette (in Monte Carlo 7) A 36x36 grid

1 The probability of being inside the disk while in the square: pc=

iR’ _ &
@RZ 1
2 n points {(x11,x21),..., (X1, X2)} = {Py,..., Py} on the 36 x 36 grid
(generated with the roulette)
3 Count the number of points inside the disk
= Compute the ratio (estimated probability of being inside the disk while in the
_ Y. P;ecircle
square): pPc= —

7/42
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Monte Carlo method: illustration

7_estimation:

i

X

A casino roulette (in Monte Carlo ?) A 36x36 grid

If n=1000 and 786 points are inside the disk : 7 =4 x 17(?0% =3.144
One can improve the estimate by increasing:
* the grid resolution, and also

* the number of points sampled n: nlir}rloofoczpcan (LLN)
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Monte Carlo method: illustration

7_estimation:

i

X

A casino roulette (in Monte Carlo ?) A 36x36 grid

If n=1000 and 786 points are inside the disk : 7 =4 x 17(?0% =3.144
One can improve the estimate by increasing:
* the grid resolution, and also

* the number of points sampled n: nlir}rloofoczpcan (LLN)

Monte Carlo sample = compute various functions
e.g. m = 4 x the probability of being inside the disk

@© B. Hejblum
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Practical: exercise 2
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Direct sampling

Direct sampling methods J
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Direct sampling
©00

Generating | bers from probability distrik

Random & pseudo-random numbers

There exist several ways to generate so-called “random” numbers
according to known distributions

NB: computer programs do not generate truly random numbers

Rather pseudo-random, which seem random but are actually generated
by a deterministic process (depending on a “seed” parameter).

8/42
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Direct sampling
00

Generating | b bal ik

s from pi ility distr
Uniform sample generation

Linear congruential algorithm: sample pseudo-random numbers
according to the Uniform distribution on [0,1] (Lehmer, 1948)

1 Generate a sequence of integers y, such as:
Yn+1 = (@yn+Db) mod. m

1
2 Xp+1= },;;Lil

choose a, b and m so that y, has a long period & (x1,...,x,) can be considered iid

with yp the “seed”, i.e. the starting point

Remark: 0<y,<m~—1 = in practice m very large (e.g. 21997,
default in “R which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on [0,1] will be
considered reliable and used by the different sampling algorithms

9/42
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Direct sampling
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Generating | b bal ik

s from pi ility distr
Other usual distributions

Relying on relationships between the different usual distributions
starting from U; ~ %o 1

10/42

Bayes for biomedical research 11 @© B. Hejblum



Direct sampling
00e

Generating | b bal ibuti

s from pi ility distr
Other usual distributions

Relying on relationships between the different usual distributions
starting from U; ~ %o 1

Binomial Bin(n,p) :

Y; = 1y,<p ~ Bernoulli(p)

n
X=) Y;~ Bin(n,p)
i=1

10/42
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Direct sampling
00e

Generating | bers from probability distributi

Other usual distributions

Relying on relationships between the different usual distributions
starting from U; ~ %o 1

Binomial Bin(n,p) :

Y; = 1y,<p ~ Bernoulli(p)

n
X=) Y;~ Bin(n,p)
i=1

Normal A47(0,1) (Box-Miiller algorithm):

U; and U, are 2 independent uniform variables on [0;1]

Y) =/ —2log U; cos(2n Us)
Y, =/ —2log U, sin(2n Uy)

= Y1 & Y, are independent random variables each following a A47(0,1)

10/42
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Direct sampling
€000

Sampling according to a distribution defined analytically

Inverse transform sampling

Definition: For a function F defined on R, its generalized inverse is
defined as: F~1(u) = inf{x such that F(x) > u}

11/42
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Direct sampling
€000

Sampling according to a distribution defined analytically

Inverse transform sampling

Definition: For a function F defined on R, its generalized inverse is
defined as: F~1(u) = inf{x such that F(x) > u}

Property: Let ° F be a cumulative probability distribution function
* U be a uniform random variable on [0,1]

Then F~1(U) defines a random variable whith cumulative probability
distribution function F

If @ one knows F, the cumulative probability distribution function from
which to sample

2 one can invert F

= then one can sample this distribution from a uniform sample on [0,1]

11/42
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Direct sampling
000

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter A

12/42
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Direct sampling
000

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter A

* density of the Exponential distribution: f(x) = 1exp(—21x)

* its cumulative probability distribution function (its integral):
F(x) =1—-exp(-Ax)

Let Fx)=u

Then x=...

12/42
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Direct sampling
000

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter A

* density of the Exponential distribution: f(x) = 1exp(—21x)

* its cumulative probability distribution function (its integral):
F(x) =1—-exp(-Ax)

Let Fx)=u
Then x= —%log(l )

= and if U~ Uy, then X=F1(U) = -1log(1 - U) ~ E()).

12/42
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Direct sampling
0000

Sampling according to a distribution defined analytically

Your turn !

Practical: exercise 3
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Direct sampling
0000

Sampling according to a distribution defined analytically

Acceptance-rejection method

Use an instrumental distribution g (which we know how to sample from)
= to sample from the target distribution f

The general principle is to choose g close to f and to propose samples
from g, to accept some and reject others to get a sample following f.

13/42
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Direct sampling
0000

Sampling according to a distribution defined analytically

Acceptance-rejection method

Use an instrumental distribution g (which we know how to sample from)
= to sample from the target distribution f

The general principle is to choose g close to f and to propose samples
from g, to accept some and reject others to get a sample following f.

Let f be the targeted density function
Let g be a proposal density function (from which one knows how to sample)
such that, for all x: f(x) < Mg(x)

While i< n:
v Sample x; ~ g and u; ~ 20,1
o S .
2 Ifuj< Mg(;cl_), accept the draw:
Yii=Xi

else reject it and return to 1.

= (J’l,---,yn) llfif

13/42

@© B. Hejblum

Ees e el remerah 1



Direct sampling
oooe

Sampling according to a distribution defined analytically

Acceptance-rejection: importance of the proposal

0.6
S 0.4 Distribution
o
5 = f (target)
2 == g (instrumental)
(%)
G 021 M*g (boundary)
[a]
0.0
. . . . .
-5.0 -25 0.0 25 5.0
X

Example of a proposal and a target ditribution for the accept-reject algorithm

Remark: The smaller M, the greater acceptance rate
= the more the algorithm is efficient at sampling from f (less iterations for a sample
size n)

So one wishes g the as close as possible to f'!
A\ g will necessarily have heavier tail than the target

= when the number of parameters increases, acceptance rate decrease svery rapidly
(curse of dimension)
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MCMC Algorithms
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MCMC Algorithms
00000

Markov chains

Markov chain definition

Markov chain: discrete time stochastic process

Definition: a series of random variables Xy, X, X2, ... (all valued over
the same state space) with the “memoryless’ Markov property:

pX; =x1Xo = x0, X1 = Xx1,..., Xi1 = Xj-1) = p(X; = x| Xi-1 = xi-1)
The set E of all possible values of X; is called the state space

2 parameters:
1 initial distribution p(Xp)
2 tansition probabilities T(x, A) = p(X; € AlXj—1 = X)

NB: only homogeneous Markov chains considered here:
pXip1 = x1X;=y) = pX; = x1X;_1 =)

15/42
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MCMC Algorithms
(o] lelele]e]

Markov chains

Markov chains properties

Property: a Markov chain is irreducible if all sets of non-zero
probability can be reached from any starting point (i.e. any state is
accessible from any other)

16/42
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MCMC Algorithms
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Markov chains

Markov chains properties

Property: a Markov chain is irreducible if all sets of non-zero
probability can be reached from any starting point (i.e. any state is
accessible from any other)

Property: a Markov chain is recurrent if the trajectories (X;) pass an
infinite number of times in any set of non-zero probability of the state
space

16/42
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MCMC Algorithms
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Markov chains

Markov chains properties

Property: a Markov chain is irreducible if all sets of non-zero
probability can be reached from any starting point (i.e. any state is
accessible from any other)

Property: a Markov chain is recurrent if the trajectories (X;) pass an
infinite number of times in any set of non-zero probability of the state
space

Property: a Markov chain is aperiodic if nothing induces periodic
behavior of the trajectories

16/42
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MCMC Algorithms
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Markov chains

Stationary law & ergodic theorem

Definition: A probability distribution p is called invariant law (or
stationary law) for a Markov chain if it verifies the following property:
if X;~ p, then Xi+j ~pVj=1

Remark: a Markov chain can admit several stationary laws

17/42
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MCMC Algorithms
[e]e] Tele]e]

Markov chains

Stationary law & ergodic theorem

Definition: A probability distribution p is called invariant law (or
stationary law) for a Markov chain if it verifies the following property:
if X;~ p, then Xi+j ~pVj=1

Remark: a Markov chain can admit several stationary laws

Ergodic theorem (infinite space): A positive irreducible and recurrent
Markov chain admits a single invariant probability distribution p and
converges towards it

17/42
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MCMC Algorithms
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Markov chains

Markov chain example (discrete state space) — |

A Baby follows a Markov chain every minute with 3 states:
S sleep
E eat
D diaper change

= its activity in Imin only depends on its current activity

Matrix of transition probabilities:

Xi/Xin S E D
S 09 0.05 005
E 07 0 03
D 08 0 02

P=

18/42
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MCMC Algorithms
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Markov chains

Markov chain example (discrete state space) — |

A Baby follows a Markov chain every minute with 3 states:
S sleep
E eat
D diaper change

= its activity in Imin only depends on its current activity

Matrix of transition probabilities:

Xi/Xin S E D
S 09 0.05 005
E 07 0 03
D 08 0 02

P=

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?
2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?

3) Suppose now that Baby is getting his/her diaper changed. What about in

10 min 7 18/42
@© B. Hejblum
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MCMC Algorithms
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Markov chains

Markov chain example (discrete state space) — Il

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?

2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?
3) Suppose now that Baby is getting his/her diaper changed. What
about in 10 min ?

19/42
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MCMC Algorithms
[e]e]e]e] o]

Markov chains

Markov chain example (discrete state space) — Il

1) Is the Markov chain irreducible ? recurrent ? aperiodic ?

2) Suppose Baby is now sleeping. What about in 2 min ? in 10 min ?

n’ 0.885\ " 0.8839779\ "
x=[0] POGIx) =xPP={0045| PXplx) = 1P = | 0.0441989
0 0.070 0.0718232

3) Suppose now that Baby is getting his/her diaper changed. What
about in 10 min ? 19/42
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MCMC Algorithms
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Markov chains

Markov chain example (discrete state space) — Il

3) Suppose now that Baby his/her diaper changed. What about in 10
min 7

20/42
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MCMC Algorithms
[e]e]e]e]e]

Markov chains

Markov chain example (discrete state space) — Il

3) Suppose now that Baby his/her diaper changed. What about in 10
min 7

T 0.8839779

0 T
=0 P(Xi0lxp) = ) P'® = | 0.0441989
1 0.0718232

Here, the Markov chain being aperiodic, recurrent and irreducible, there
is a stationary law: p= pP.

20/42
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MCMC Algorithms
0000000
MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

21/42
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MCMC Algorithms
0000000

MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

21/42
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MCMC Algorithms
0000000

MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:
1 the Markov chain must first converge to its stationary distribution:

< ~
Y X, Xy p

n—-+oo

21/42
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MCMC Algorithms
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MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:
1 the Markov chain must first converge to its stationary distribution:

£ -
vV Xo, Xn p

n—-+oo

2 then Monte Carlo convergence must also happen:

Ly
Ni:l "

Elf(X)]

N—+o00

21/42
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MCMC Algorithms
0000000

MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

= sample a Markov chain whose stationary law is the target (such as the
posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:
%
VX0, Xn p

n—-+oo

2 then Monte Carlo convergence must also happen:

Ly
Ni:l "

Elf(X)]

N—+o00

Markov chain convergence Monte Carlo sample

Xo— X1 —Xo— o — Xy — Xpi1 — Xpao — - — Xpan

21/42
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MCMC Algorithms
0Oe000000

MCMC Sampling

General framework of MCMC algorithms

MCMC algorithms uses an acceptance-rejection framework

© Initialise x©
2 Fort=1...n+N:
a Propose a new candidate y@ ~ g9 |x(=1)

b Accept y'¥ with probability a(x(~1, ).
202y

if £>n, “save” x(¥ (as part of the final Monte Carlo sample)

where ¢ is the instrumental distribution for proposing new samples
and «a is the acceptance probability.

22/42
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MCMC Algorithms
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MCMC Sampling

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution g
proposing new samples

= infinite possibilities: some better than others

23/42
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MCMC Algorithms
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MCMC Sampling

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution g
proposing new samples

= infinite possibilities: some better than others

To guaranty convergence towards the target p :
* the support of g has to cover the support of p
* g must not generate periodic values

23/42
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MCMC Algorithms
[e]e] lelelele]e]

MCMC Sampling

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution g
proposing new samples

= infinite possibilities: some better than others

To guaranty convergence towards the target p :
* the support of g has to cover the support of p
* g must not generate periodic values

NB: ideally g is easy and fast to compute

23/42
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MCMC Algorithms
[e]e]e] lelele]e]

MCMC Sampling

Metropolis-Hastings algorithm

» Initialise x©
2 Fort=1,...,n+N :
a Sample ¥ ~ gy )xt-1))
b Compute the acceptance probability
a® = min{l poy™) px—D) }

'q(ymlx(l’l)) q(x(lfl)|y(t))

© Acceptance-rejection step: sample u(9 ~ 01
o FORTCIFNG
D else

(W) (t=1) |18
a® = mini1, py™) g™ Vly™)
fa(x(t‘l)) q(ymlx(t‘l))
= computable even if pis known only up to a constant !
(like the posterior)

24/42
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MCMC Algorithms
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MCMC Sampling

Metropolis-Hastings: particular cases

Sometimes a'¥ computation simplifies:
« independent Metropolis-Hastings: g('?|x!""V) = g(y?)

« random walk Metropolis-Hastings: g(y\?|x!""1) = g(y¥ — x(*=1)
If g is symmetric (g(—x) = g(x)), then:

i?(y(”) q(y(t)|x(t—l)) B p(y(t)) M_ p(y(t))
Px=D) g(xl=D]y0) - f?(x(t—l))M_ p(xt=D)

25/42
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MCMC Algorithms
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MCMC Sampling

Pro and cons of Metropolis-Hastings

© very simple & very general
@ allow sampling from uni- or multi-dimensional distributions

@ choice of the proposal is crucial, but hard
= huge impact on algorithm performances

@ quickly becomes inefficient dimension is too high

NB: a high rejection rate often implies important computation timings

26/42
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MCMC Algorithms
[ee]e]ele]e] o]

MCMC Sampling

Simulated annealing

Change a'¥ computation during the algorithm:
v a® must first be large to explore all of the state space

2 then a'¥ must become smaller when the algorithm converges

27/42
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MCMC Algorithms
[ee]e]ele]e] o]

MCMC Sampling

Simulated annealing

Change a'¥ computation during the algorithm:
v a® must first be large to explore all of the state space

2 then a'¥ must become smaller when the algorithm converges

» Initialise x©
2 Fort=1,...,n+N:
& Sample y1 ~ g(y|xt=D)
b Compute the acceptance probability

1
0 — i po®) g1y ) 7@
a —mln{ly(i](x(,_n) PRI

@ Acceptance-rejection step: sample u(d ~ 01

o |y if ud <q®
x=
7D else

27/42
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MCMC Algorithms
[ee]e]ele]e] o]

MCMC Sampling

Simulated annealing

Change a'¥ computation during the algorithm:
v a® must first be large to explore all of the state space

2 then a'¥ must become smaller when the algorithm converges

» Initialise x©
2 Fort=1,...,n+N:
& Sample y1 ~ g(y|xt=D)
b Compute the acceptance probability

1
ald :min{l ( Py q(x”“|y<f)))ﬂn}

p=Dy gy |x=D)

@ Acceptance-rejection step: sample u(d ~ 01

o |y if ud <q®
x=
7D else

27142

t
.
Ex: T(t)=Ty (Tg) " = particularly useful for avoiding local optima

B. Hejblum
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MCMC Algorithms
O000000e

MCMC Sampling

Gibbs sampler

When the dimension , = very hard to propose probable values

Gibbs samplers: re-actualisation coordinate by coordinate, while
conditioning on the most recent values (no acceptance-rejection)

1 Initialise x©@ = (x]
2 Fort=1,...,n+N:

(0) 0)
s Xy )

a Sample xm ~p(x1|x(t b (dtfl))
Sample (t) ~p(x2|x§t),x§t U, ..,xg_l))

b

© ...

d Samplex ~p(x|x(t) . g”l,xgill),...,xf;_l))
=

f

Sample x(t) ~ p(xdlxm (t) )

B: if the conditional distribution is unknown for some coordinates, an
acceptance-rejection step can be included for this coordinate only (Metropolis within
gibbs)

28/42
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MCMC Algorithms
00000000

MCMC Sampling

Your turn !

Practical: exercise 4
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MCMC in practice

Bayes for biomedical research 11 @© B. Hejblum



MCMC in pratice
[ le]

Software

MCMC softwares

* BUGS : Bayesian inference Using Gibbs Sampling
1989 MRC BSU University of Cambridge (UK)

= flexible software for Bayesian analysis in complex statistical models
through MCMC algorithms

o WinBUGS: A\ clic + Windows only + stopped development

https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/

o OpenBUGS: A\ clic + Windows only + Linux partially

https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/

o JAGS: © command line + “R interface
http://mcme- jags.sourceforge.net/

* STAN: specialized for high-dimensional problems

http://mc-stan.org/
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Software

rjags

JAGS software is modern and efficient :
* relies on the BUGS language to specify a Bayesian model
* ‘R interface thanks to rjags package

* results analysis with ‘R packages

o coda

o HDInterval
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Convergence diagnostics

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a Monte
Carlo sample from the posterior distribution

= requires Markov chain convergence towards its stationary law
(posterior distribution).
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Convergence diagnostics

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a Monte
Carlo sample from the posterior distribution

= requires Markov chain convergence towards its stationary law
(posterior distribution).

A\ No guaranty that this convergence will occur within finite time

= study the convergence empirically for each analysis

31/42
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Convergence diagnostics

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a Monte
Carlo sample from the posterior distribution

= requires Markov chain convergence towards its stationary law
(posterior distribution).

A\ No guaranty that this convergence will occur within finite time

= study the convergence empirically for each analysis

Q Initialisation of several Markov chains from different initial values J

= If convergence is reached, then these chains must be overlapping

31/42
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Convergence diagnostics

Graphical diagnostics

* Trace

* Posterior density

* Running Quantiles

* Gelman-Rubin diagram

* Auto-correlogram
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Convergence diagnostics

Trace

coda: :traceplot ()

Trace Trace
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© chain traces must overlap and mix

@ /' n.iter and/or / burn-in
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Convergence diagnostics

Posterior density

coda: :densplot ()

Density Density
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© density must be smooth and uni-modal

@ /' n.iter and/or / burn-in
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Convergence diagnostics

Running quantiles

coda: : cumuplot ()

Cumulated quantiles Cumulated quantiles
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© running quantiles must be stable across iterations

@ /' n.iter and/or / burn-in
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Convergence diagnostics

Gelman-Rubin statistic

° variation between the different chains

* variation within a given chain

If the algorithm has properly converged, the between-chain variation must be close to

zero

01 = (B[C], 6[(2”) the N-sample from chain number ¢c=1,...,C
: . EAwyB

Gelman-Rubin statistic: R= T

* between-chain variance: B= %Zgzl(é[a -6.)2

* chain average: 9[c] = %ervlﬂfg

* global average: 6. = %ZCC:I(;[C]

. N ] 2
within-chain variance: S[ZC] N 1 Z (HIC] Oy

N—+00& B—0= R—1

Other statistics exist. . . 36/42
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Convergence diagnostics

Gelman-Rubin diagram

coda: :gelman.plot ()

Gelman-Rubin statistic Geman-Rubin statistic
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© Gelman-Rubin statistic median must remain under the 1,01 threshold (or 1,05)

& /' n.iter and/or / burn-in
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Convergence diagnostics

Effective Sample Size (ESS)

Markov property = auto-correlation between values sampled after one
another (dependent sampling) :

* reduce the amount of information available within a sample size n
* slows down LLN convergence

Effective sample size quantifies this:

N

ESS= —
1+2 ;;ch’ p(k)

where p(k) is the auto-correlation with lag k.

Space out saved samples (e.g. every 2, 5, or 10 iterations)
= reduces dependency within the Monte Carlo sample generated
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Convergence diagnostics

Auto-correlation

coda: :acfplot ()
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© auto-correlations must decrease rapidly to oscillate around zero

@  thin and/or / n.iter and/or / burn-in
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Convergence diagnostics

Monte Carlo error

For a given parameter, quantifies the error introduced through the Monte
Carlo method
(standard deviation of the Monte Carlo estimator across the chains)

* That error must be consistent from one chain to another

° The larger N (number of iterations), the smaller the Monte Carlo error
will be

A\ This Monte Carlo error must be small with respect to the estimated
variance of the posterior distribution
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Inference

Estimation

Thanks to MCMC algorithms, one can obtain a Monte Carlo sample

from the posterior distribution for a Bayesian model

Monte Carlo method can then be used to get posterior estimates :
° Point estimates (posterior mean, posterior median, ...)

* Credibility interval (shortest: Highest Density Interval — HDI with
R package HDInterval)
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Inference

Deviance Information Criterion (DIC)

Deviance is: D(8) = —2log(p(8]y)) + C with C a constant
Deviance Information Criterion is then:
DIC=D(O) + pp

where pp = (D(E) —D(Q)) represents a penalty for the effective number of
parameters

= DIC allows to compare different models estimated on the same data

the smaller the DIC, the better the model !

[M PI , Penalized loss fi i for Bayesian model comparison, Biostatistics, 2008]
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Inference

Your turn !

Practical: exercise 5
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