Bayesian Methods for Biomedical Research Part III: Bayesian applications in medical research

Boris Hejblum https://bayesee.borishejblum.science

ISPED summer school at the University of Bordeaux June 5th, 2024

Introduction

Bayes for biomedical research III

Bayesian meta-analysis 00000

Examples of Bayesian applications

3 different real-world use cases in biomedical sciences: illustrations where the Bayesian approach can be particularly useful

▲ Disclaimer: this course is NOT

- a meta-analysis short-course
- an adaptive design in clinical trials short-course

Post-mortem re-analysis of an under-powered randomized trial

Original analysis of EOLIA

EOLIA (Combes et al., NEJM, 2018):

- randomized clinical trial
- evaluation of a new treatment for severe acute respiratory distress syndrome
- outcome: mortality rate after 60 days
- 249 patients:
 - 125 controls
 - ⇒ mechanical ventilation (conventional treatment)
 - 124 treated
 - ⇒ ECMO (extracorporeal membrane oxygenation new(er) treatment)

Frequentist analysis:

 \Rightarrow Relative Risk of death at 60 days for ECMO compared to control: 0.76

 $CI_{95\%} = [0.55, 1.04]$

p-value = 0.09

Bayesian re-analysis of EOLIA data

Goligher et al. (JAMA, 2018)

	Group	
	ECMO	Control
group size n	124	125
number of deaths at 60 days	44	57

Observed data in the EOLIA trial

Your turn !

Read EC Goligher *et al.* Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial, *JAMA* 320(21): 2251, 2018. [DOI:10.1001/jama.2018.14276]

Practical: exercise 6

Bayesian meta-analysis

Bayes for biomedical research III

Intro

Bayesian meta-analysis ●0000

Introduction to meta-analysis

What is a meta-analysis

"An analysis of analyses"

 \Rightarrow a single quantitative summary of studies answering the same research question

 $\underline{\mathsf{Ex:}}$ medical therapies effects are often evaluated in multiple different studies.

What is a meta-analysis

"An analysis of analyses"

 \Rightarrow a single quantitative summary of studies answering the same research question

 $\underline{\mathsf{Ex:}}$ medical therapies effects are often evaluated in multiple different studies.

 \Rightarrow pool individual observations from multiple studies ?

What is a meta-analysis

"An analysis of analyses"

 \Rightarrow a single quantitative summary of studies answering the same research question

 $\underline{\mathsf{Ex:}}$ medical therapies effects are often evaluated in multiple different studies.

⇒ pool individual observations from multiple studies ?

- ▲ potential differences in the pooled experiments
- $\underline{\wedge}$ only aggregated summary statistics estimates ("effect sizes") available
 - alongside uncertainty (e.g. standard errors)

Bayesian meta-analysis ○●○○○

Study Heterogeneity

Introduction to meta-analysis

 \wedge variations of the observed effects...

6/10

Study Heterogeneity

Introduction to meta-analysis

- \wedge variations of the observed effects...
 - within-study uncertainty, or
 - · real heterogeneity in effect size between the different studies

Study Heterogeneity

- \wedge variations of the observed effects...
 - within-study uncertainty, or
 - · real heterogeneity in effect size between the different studies

Often, different studies used different populations ⇒ potential extra-variability

+ different sample sizes \Rightarrow also impact the estimate and its variability

Meta-analysis random effects model

Common approach for meta-analysis:

 $\begin{aligned} y_i &\sim \mathcal{N}(\theta_i, \sigma_i^2) \\ \theta_i &\sim \mathcal{N}(\mu, \tau^2) \end{aligned}$

Meta-analysis random effects model

Common approach for meta-analysis:

 $y_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$ $\theta_i \sim \mathcal{N}(\mu, \tau^2)$

Hierarchical generalization of the fixed effect model:

 $y_i \sim \mathcal{N}(\mu, \sigma_i^2)$

Meta-analysis random effects model

Common approach for meta-analysis:

 $\begin{aligned} y_i &\sim \mathcal{N}(\theta_i, \sigma_i^2) \\ \theta_i &\sim \mathcal{N}(\mu, \tau^2) \end{aligned}$

⇒ between study variability: $y_i \sim \mathcal{N}(\mu, \sigma_i^2 + \tau^2)$

Hierarchical generalization of the fixed effect model:

 $y_i \sim \mathcal{N}(\mu, \sigma_i^2)$

 \Rightarrow assume same average effect for each study

Bayesian meta-analysis 000●0

Introduction to meta-analysis

Bayesian meta-analysis in practice

Meta-analysis: a perfect usecase for Bayesian analysis ?

Bayesian meta-analysis 000●0

Introduction to meta-analysis

Bayesian meta-analysis in practice

Meta-analysis: a perfect usecase for Bayesian analysis ?

- few observations
- informative prior
- sequential

Introduction to meta-analysis Going further

Scientific literature search

∧ FIRST (!) exhaustive search of the scientific literature

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Evidence synthesis

Meta-analysis \in evidence synthesis e.g. meta-regression, mechanistic modeling, ...

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Evidence synthesis

Meta-analysis \in evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
 - Serghiou & Goodman, JAMA, 2018

Scientific literature search

 \land FIRST (!) exhaustive search of the scientific literature: hard !!! \land effect size estimate (along with their standard errors) must often be **transformed before** the meta-analysis

Evidence synthesis

Meta-analysis \in evidence synthesis

e.g. meta-regression, mechanistic modeling, ...

Still active research domains:

- random effects model will down-weight studies with larger sample sizes
 - Serghiou & Goodman, JAMA, 2018
 - a bug or a feature ?

Your turn !

Bayesian meta-analysis

Read ND Crins *et al.* Interleukin-2 Receptor Antagonists for Pediatric Liver Transplant Recipients: A Systematic Review and Meta-Analysis of Controlled Studies, *Pediatric Transplantation* 18(8):839, 2014. [DOI:10.1111/petr.12362]

Practical: exercise 7

BONUS content: CRM dose-escalation

CRM dose-escalation

Continuous Reassessment method

CRM [O'Quigley at al., 1990]

Objective: identify the optimal dose (i.e. Minimum Efficient Dose or Maximum Tolerated Dose)

 \Rightarrow select iteratively the dose for the next (batch of) recruited patient(s) based accumulating observations from previously included patients

CRM dose-escalation

Continuous Reassessment method

CRM [O'Quigley at al., 1990]

Objective: identify the optimal dose (i.e. Minimum Efficient Dose or Maximum Tolerated Dose)

⇒ select iteratively the dose for the next (batch of) recruited patient(s) based accumulating observations from previously included patients

evidence) treat each patient ethically (dose best supported by the current evidence)

😂 prior knowledge

😁 sequential Bayesian: online update of the posterior

CRM dose-escalation

Your turn !

Read F Kaguelidou *et al.* Dose-Finding Study of Omeprazole on Gastric pH in Neonates with Gastro-Esophageal Acid Reflux Using a Bayesian Sequential Approach, *PLOS ONE* 11(12):e0166207, 2016. [DOI:10.1371/journal.pone.0166207]

Practical: BONUS exercise 9