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Course objectives

I Familiarize oneself with the Bayesian framework:

1 understand and assess a Bayesian modeling strategy, and discuss its
underlying assumptions

2 rigorously describe expert knowledge by a quantitative prior
distribution

II Study and perform Bayesian analyses in biomedical applications:

1 understand, discuss and reproduce a Bayesian (re-)estimation of a
Relative Risk

2 perform a Bayesian regression using , applied to meta-analysis

3 put into perspective the results from a Bayesian analysis described in
a scientific articlee

NB : this course is by no means exhaustive, and the curious reader will be referred to
more complete works such as The Bayesian Choice by C Robert.
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Disclaimer

Audience is often diverse:
Students with different backgrounds & different expertise
will get a different experience of this class

Some parts can feel hard, frustrating or even not very relevant to you.

My goal: everyone finds interesting ideas, concept and tools to learn.

For some, the important focus will be the medical applications, for others
it will be the programming tools, or the new philosophical framework, or
the statistical tools. . .

OK to feel a bit lost at first
Things should make more sense as we progress !

⇒ Ask questions !
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Motivational examples

Motivational examples: diagnostic tests
[Good, J GEN INTERN MED 2020]

Interpreting COVID-19 Test Results: a Bayesian Approach

J Gen Intern Med 35(8):2490–1
DOI: 10.1007/s11606-020-05918-8
© Society of General Internal Medicine 2020

INTRODUCTION

As physicians care for patients with contact history and symp-
toms that might represent coronavirus disease 2019 (COVID-
19), interpreting the results of polymerase chain reaction
(PCR) assays from nasal and pharyngeal swabs is crucial.
While a positive result in an acutely ill patient is straightfor-
ward, how should physicians interpret negative tests in pa-
tients with suspected COVID-19 infection?
Physicians and patients often place inappropriate confidence

in test results, even when those tests are imperfect.1 Specifically,
physicians may minimize their own clinical reasoning (e.g.,
their pre-test probability of disease) and defer to a test result
that may not be correct. With PCR testing for COVID-19, false
negative tests are particularly concerning, potentially leading to
an inappropriate sense of security regarding infectivity.
To accurately interpret test results, one needs to know the

positive and negative predictive values of a test in the setting
applied, which depend on its sensitivity and specificity, along
with prevalence or pre-test probability. Although the specific-
ity of PCR assays for COVID-19 appears to be close to 100%,
documenting its sensitivity is surprisingly elusive.2 Real-
world sensitivity of the COVID-19 assay is especially impact-
ed by difficulty in sampling technique for obtaining specimens
using nasopharyngeal swabs.3 One recent unpublished (non-
peer reviewed) study based on the experience in China sug-
gested a sensitivity of 70%.4

We believe that Bayes theorem can be applied to the inter-
pretation of negative PCR results in patients with suspected
COVID-19 infection. To illustrate, we simulate two patient
scenarios with differing contact history and clinical
presentations.

METHODS

We applied a Bayesian analysis to interpret negative and
positive COVID-19 PCR assay results for two clinical scenar-
ios. For both scenarios, we assumed a PCR assay specificity of
99.9% and varied the sensitivity from 70 to 90%.4, 5

Scenario 1 (high pre-test probability of COVID-19 infection):
A 32-year-old nurse presents with 2 days of fevers to 102°,

Received April 22, 2020
Accepted May 6, 2020

Published online June 3, 2020

cough, and subjective dyspnea. She works in an emergency
room that has evaluated numerous COVID-19 patients. She
reports using appropriate personal protective equipment. We
estimated a pre-test probability of COVID-19 infection at
90% (but varied it to as low as 70%).
Scenario 2 (low pre-test probability of COVID-19 infection):
A 25-year-old male presents with subjective fevers (no
temperature taken), cough, and subjective dyspnea. He has
no significant exposures but lives where COVID-19 infec-
tions were reported; he has worked at home for the past
month with occasional shopping for food. He reports
frequent hand washing and practices social distancing. We
estimated a pre-test probability of COVID-19 infection at 5%
(but varied it to as high as 10%).

RESULTS

For the high-risk scenario with our estimated 90% pre-test prob-
ability, the post-test probability of a false negative test ranged
from 47 to 73% (Table 1). With a 70% pre-test probability, the
post-test probability of a false negative ranged from 19 to 41%.
For a low-risk scenario with a pre-test probability of 5–10%, the
post-test disease probability with a negative test ranged from 0.5
to 3.2%.Disease likelihoodwith a positive test remained > 99.9%
in the high-risk scenario and > 97.4% in the low-risk patient.

DISCUSSION

We applied a Bayesian approach to illustrate the interpretation
of COVID-19 negative tests based on the clinical suspicion of
disease probability. A positive test in both high pre-test and
low pre-test scenarios most likely represents acute infection.
Likewise, a negative test in a low pre-test probability case

Table 1 Estimates for Post-Test Probability of Acute COVID-19
Infection for Simulated Patient Scenarios

Clinical
Scenarios

Pre-test
probability
(%)

PCR assay
sensitivity
(%)

Post-test probability
of acute COVID-19
infection

Positive
test (%)

Negative
test (%)

Patient 1:
high pre-
test proba-
bility

70 70 100 41.2
90 100 18.9

90 70 100 73.0
90 100 47.4

Patient 2:
low pre-test
probability

5 70 97.4 1.6
90 97.9 0.5

10 70 98.7 3.2
90 99.0 1.1

2490
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Motivational examples: clinical trial design

Design

CLINICAL
TRIALS

Clinical Trials
1–10
! The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1740774520943846
journals.sagepub.com/home/ctj

Anti-Thrombotic Therapy to
Ameliorate Complications of
COVID-19 (ATTACC): Study design
and methodology for an international,
adaptive Bayesian randomized
controlled trial
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Abstract
Background: Mortality from COVID-19 is high among hospitalized patients and effective therapeutics are lacking.
Hypercoagulability, thrombosis and hyperinflammation occur in COVID-19 and may contribute to severe complications.
Therapeutic anticoagulation may improve clinical outcomes through anti-thrombotic, anti-inflammatory and anti-viral
mechanisms. Our primary objective is to evaluate whether therapeutic-dose anticoagulation with low-molecular-weight
heparin or unfractionated heparin prevents mechanical ventilation and/or death in patients hospitalized with COVID-19
compared to usual care.
Methods: An international, open-label, adaptive randomized controlled trial. Using a Bayesian framework, the trial will
declare results as soon as pre-specified posterior probabilities for superiority, futility, or harm are reached. The trial uses
response-adaptive randomization to maximize the probability that patients will receive the more beneficial treatment
approach, as treatment effect information accumulates within the trial. By leveraging a common data safety monitoring
board and pooling data with a second similar international Bayesian adaptive trial (REMAP-COVID anticoagulation
domain), treatment efficacy and safety will be evaluated as efficiently as possible. The primary outcome is an ordinal end-
point with three possible outcomes based on the worst status of each patient through day 30: no requirement for inva-
sive mechanical ventilation, invasive mechanical ventilation or death.
Conclusion: Using an adaptive trial design, the Anti-Thrombotic Therapy To Ameliorate Complications of COVID-19
trial will establish whether therapeutic anticoagulation can reduce mortality and/or avoid the need for mechanical venti-
lation in patients hospitalized with COVID-19. Leveraging existing networks to recruit sites will increase enrollment and
mitigate enrollment risk in sites with declining COVID-19 cases.

Keywords
Heparin, thrombosis, COVID-19, adaptive clinical trial, protocol

Introduction

Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) is a novel coronavirus that has rapidly
spread across the globe causing severe respiratory infec-
tion.1,2 With the possible exception of remdesivir, no
therapies have proven efficacy.3,4 Rapidly deployable,
safe and effective therapeutic agents are urgently
needed. Coronavirus disease 2019 (COVID-19) is asso-
ciated with activation of coagulation and inflammatory
pathways (Figure 1), suggesting that therapeutic-dose
anticoagulation may improve clinical outcomes.

Early observational reports suggest that COVID-19
infection is associated with hypercoagulability and
increased risk of thrombosis.5–7 Thrombosis is closely
linked to systematic vascular inflammation and, dis-
tinct from other respiratory viral syndromes, COVID-
19 appears to be associated with a profound endothe-
liopathy.8 D-dimer levels may signal this coagulopathy
and predict poor prognosis.5,9,10 D-dimers may also
help identify patients most likely to benefit from
anticoagulation.

Heparin is a commonly used anti-thrombotic agent
that facilitates antithrombin-mediated inactivation of
factors Xa and IIa. Heparin has diverse anti-
inflammatory properties and is known to inhibit com-
plement and adhesion molecule expression in the
microvasculature11 and downregulate interleukin 6.12

Heparin may also exert direct anti-viral effects on

SARS-CoV-2.13 Upon binding heparin, the SARS-
CoV-2 spike protein undergoes conformational changes
that interfere with binding to angiotensin converting
enzyme-2. A similar anti-viral effect of heparin has also
been observed with SARS-CoV-1.14,15

A significant body of evidence including laboratory
data,11,12 animal models,16 observational studies,17 ran-
domized controlled trials in humans18,19 and meta-analy-
ses18,20 support the potential for heparin to reduce
mortality in sepsis. Data are limited in COVID-19,
although an observational study from China suggested
that the use of low-dose heparin may be associated with
lower mortality in patients with elevated D-dimer lev-
els.21,22 A second observational cohort from New York
observed that therapeutic anticoagulation was associated
with longer survival among critically ill patients with
COVID-19.23 Both observational studies had important
limitations and cited the need for randomized trials.

These data provide a compelling rationale to evalu-
ate therapeutic anticoagulation with heparin in patients
with COVID-19. The proposed Anti-Thrombotic
Therapy To Ameliorate Complications of COVID-19
(ATTACC) trial will leverage an international network
of over 30 sites across Canada, the United States,
Brazil and Mexico to rapidly inform clinical practice.
In this article, we describe and elaborate upon design
considerations including our choices and rationale with
an aim to provide helpful and generalizable guidance
for the clinical trials community.

2 Clinical Trials 00(0)

[Houston et al., Clinical Trials, 17(5):491-500, 2020]
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The new england  
journal of medicine

n engl j med 384;16 nejm.org April 22, 2021 1491

established in 1812 April 22, 2021 vol. 384 no. 16
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A.C. Cheng, M.A. Detry, E.J. Duffy, L.J. Est-
court, M. Fitzgerald, H. Goossens, R. 
Haniffa, A.M. Higgins, T.E. Hills, C.M. 
Horvat, F. Lamontagne, P.R. Lawler, H.L. 
Leavis, K.M. Linstrum, E. Litton, E. Lo-
renzi, J.C. Marshall, F.B. Mayr, D.F. 
McAuley, A. McGlothlin, S.P. McGuin-
ness, B.J. McVerry, S.K. Montgomery, 
S.C. Morpeth, S. Murthy, K. Orr, R.L. 
Parke, J.C. Parker, A.E. Patanwala, V. Pet-
tilä, E. Rademaker, M.S. Santos, C.T. 
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W.I. Sligl, A.F. Turgeon, A.M. Turner, F.L. 
van de Veerdonk, R. Zarychanski, C. 
Green, R.J. Lewis, D.C. Angus, C.J. Mc-
Arthur, S. Berry, S.A. Webb, and L.P.G. 
Derde)  assume responsibility for the over-
all content and integrity of this article. 
The full names, academic degrees, and 
affiliations of the members of the writing 
committee are listed in the Appendix. Ad-
dress reprint requests to Dr. Gordon at 
the Division of Anaesthetics, Pain Medi-
cine, and Intensive Care, Imperial Col-
lege London, St. Mary’s Hospital, Praed 
St., London W2 1NY, United Kingdom, or 
at  anthony . gordon@  imperial . ac . uk.

*A complete list of the REMAP-CAP in-
vestigators and collaborators is pro-
vided in the Supplementary Appendix, 
available at NEJM.org.

This article was published on February 25, 
2021, at NEJM.org.

N Engl J Med 2021;384:1491-502.
DOI: 10.1056/NEJMoa2100433
Copyright © 2021 Massachusetts Medical Society.

BACKGROUND
The efficacy of interleukin-6 receptor antagonists in critically ill patients with 
coronavirus disease 2019 (Covid-19) is unclear.

METHODS
We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, 
adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting 
organ support in the intensive care unit (ICU), were randomly assigned to receive 
tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard 
care (control). The primary outcome was respiratory and cardiovascular organ sup-
port–free days, on an ordinal scale combining in-hospital death (assigned a value 
of −1) and days free of organ support to day 21. The trial uses a Bayesian statistical 
model with predefined criteria for superiority, efficacy, equivalence, or futility. An 
odds ratio greater than 1 represented improved survival, more organ support–free 
days, or both.

RESULTS
Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that 
time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to 
control. The median number of organ support–free days was 10 (interquartile range, 
−1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sari-
lumab group, and 0 (interquartile range, −1 to 15) in the control group. The me-
dian adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) 
for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as 
compared with control, yielding posterior probabilities of superiority to control of 
more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed 
improved survival in the pooled interleukin-6 receptor antagonist groups, yielding 
a hazard ratio for the comparison with the control group of 1.61 (95% credible 
interval, 1.25 to 2.08) and a posterior probability of superiority of more than 
99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor 
antagonists.

CONCLUSIONS
In critically ill patients with Covid-19 receiving organ support in ICUs, treatment 
with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved 
outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.)
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hypoxaemia: a pre-planned, secondary Bayesian 
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Christian Gluud38,39, Theis Lange40 and Anders Perner1,2

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

Abstract 
Purpose: We compared dexamethasone 12 versus 6 mg daily for up to 10 days in patients with coronavirus disease 
2019 (COVID-19) and severe hypoxaemia in the international, randomised, blinded COVID STEROID 2 trial. In the 
primary, conventional analyses, the predefined statistical significance thresholds were not reached. We conducted a 
pre-planned Bayesian analysis to facilitate probabilistic interpretation.

Methods: We analysed outcome data within 90 days in the intention-to-treat population (data available in 967 to 982 
patients) using Bayesian models with various sensitivity analyses. Results are presented as median posterior probabili-
ties with 95% credible intervals (CrIs) and probabilities of different effect sizes with 12 mg dexamethasone.

Results: The adjusted mean difference on days alive without life support at day 28 (primary outcome) was 1.3 days 
(95% CrI −0.3 to 2.9; 94.2% probability of benefit). Adjusted relative risks and probabilities of benefit on seri-
ous adverse reactions was 0.85 (0.63 to 1.16; 84.1%) and on mortality 0.87 (0.73 to 1.03; 94.8%) at day 28 and 0.88 
(0.75 to 1.02; 95.1%) at day 90. Probabilities of benefit on days alive without life support and days alive out of hospital 
at day 90 were 85 and 95.7%, respectively. Results were largely consistent across sensitivity analyses, with relatively 
low probabilities of clinically important harm with 12 mg on all outcomes in all analyses.

*Correspondence:  andersgran@gmail.com 
1 Department of Intensive Care, Rigshospitalet—Copenhagen University 
Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
Full author information is available at the end of the article
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Abstract 
Purpose: We compared dexamethasone 12 versus 6 mg daily for up to 10 days in patients with coronavirus disease 
2019 (COVID-19) and severe hypoxaemia in the international, randomised, blinded COVID STEROID 2 trial. In the 
primary, conventional analyses, the predefined statistical significance thresholds were not reached. We conducted a 
pre-planned Bayesian analysis to facilitate probabilistic interpretation.

Methods: We analysed outcome data within 90 days in the intention-to-treat population (data available in 967 to 982 
patients) using Bayesian models with various sensitivity analyses. Results are presented as median posterior probabili-
ties with 95% credible intervals (CrIs) and probabilities of different effect sizes with 12 mg dexamethasone.

Results: The adjusted mean difference on days alive without life support at day 28 (primary outcome) was 1.3 days 
(95% CrI −0.3 to 2.9; 94.2% probability of benefit). Adjusted relative risks and probabilities of benefit on seri-
ous adverse reactions was 0.85 (0.63 to 1.16; 84.1%) and on mortality 0.87 (0.73 to 1.03; 94.8%) at day 28 and 0.88 
(0.75 to 1.02; 95.1%) at day 90. Probabilities of benefit on days alive without life support and days alive out of hospital 
at day 90 were 85 and 95.7%, respectively. Results were largely consistent across sensitivity analyses, with relatively 
low probabilities of clinically important harm with 12 mg on all outcomes in all analyses.
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BACKGROUND
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the 
resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people 
in a worldwide pandemic. Safe and effective vaccines are needed urgently.

METHODS
In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy 
trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive 
two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 µg 
per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA 
vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-
length spike protein. The primary end points were efficacy of the vaccine against 
laboratory-confirmed Covid-19 and safety.

RESULTS
A total of 43,548 participants underwent randomization, of whom 43,448 received 
injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of 
Covid-19 with onset at least 7 days after the second dose among participants as-
signed to receive BNT162b2 and 162 cases among those assigned to placebo; 
BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 
97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups 
defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of 
coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first 
dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety 
profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the 
injection site, fatigue, and headache. The incidence of serious adverse events was 
low and was similar in the vaccine and placebo groups.

CONCLUSIONS
A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in 
persons 16 years of age or older. Safety over a median of 2 months was similar to 
that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov 
number, NCT04368728.)
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the occurrence of adverse events more than 2 to 
3.5 months after the second dose and more 
comprehensive information on the duration of 
protection remain to be determined. Although 
the study was designed to follow participants for 
safety and efficacy for 2 years after the second 
dose, given the high vaccine efficacy, ethical and 
practical barriers prevent following placebo re-
cipients for 2 years without offering active im-
munization, once the vaccine is approved by 
regulators and recommended by public health 
authorities. Assessment of long-term safety and 
efficacy for this vaccine will occur, but it cannot 
be in the context of maintaining a placebo group 
for the planned follow-up period of 2 years after 
the second dose. These data do not address 
whether vaccination prevents asymptomatic in-
fection; a serologic end point that can detect a 
history of infection regardless of whether symp-
toms were present (SARS-CoV-2 N-binding anti-
body) will be reported later. Furthermore, given 
the high vaccine efficacy and the low number of 
vaccine breakthrough cases, potential establish-

ment of a correlate of protection has not been 
feasible at the time of this report.

This report does not address the prevention 
of Covid-19 in other populations, such as young-
er adolescents, children, and pregnant women. 
Safety and immune response data from this trial 
after immunization of adolescents 12 to 15 years 
of age will be reported subsequently, and addi-
tional studies are planned to evaluate BNT162b2 
in pregnant women, children younger than 12 
years, and those in special risk groups, such as 
immunocompromised persons. Although the 
vaccine can be stored for up to 5 days at stan-
dard refrigerator temperatures once ready for use, 
very cold temperatures are required for shipping 
and longer storage. The current cold storage re-
quirement may be alleviated by ongoing stability 
studies and formulation optimization, which 
may also be described in subsequent reports.

The data presented in this report have sig-
nificance beyond the performance of this vac-
cine candidate. The results demonstrate that 
Covid-19 can be prevented by immunization, 

Table 2. Vaccine Efficacy against Covid-19 at Least 7 days after the Second Dose.*

Efficacy End Point BNT162b2 Placebo

Vaccine Efficacy, %  
(95% Credible 

Interval)‡

Posterior  
Probability 

(Vaccine Efficacy 
>30%)§

No. of 
Cases

Surveillance 
Time (n)†

No. of 
Cases

Surveillance 
Time (n)†

(N=18,198) (N=18,325)

Covid-19 occurrence at least  
7 days after the second 
dose in participants with-
out evidence of infection

8 2.214 (17,411) 162 2.222 (17,511) 95.0 (90.3–97.6) >0.9999

(N=19,965) (N=20,172)

Covid-19 occurrence at least  
7 days after the second 
dose in participants with 
and those without evidence 
of infection

9 2.332 (18,559) 169 2.345 (18,708) 94.6 (89.9–97.3) >0.9999

*  The total population without baseline infection was 36,523; total population including those with and those without prior evidence of infec-
tion was 40,137.

†  The surveillance time is the total time in 1000 person-years for the given end point across all participants within each group at risk for the 
end point. The time period for Covid-19 case accrual is from 7 days after the second dose to the end of the surveillance period.

‡  The credible interval for vaccine efficacy was calculated with the use of a beta-binomial model with prior beta (0.700102, 1) adjusted for the 
surveillance time.

§  Posterior probability was calculated with the use of a beta-binomial model with prior beta (0.700102, 1) adjusted for the surveillance time.
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Frequentist statistics

Statistics:
• a mathematical science
• to describe what has happened and
• to assess what may happen in the future
• relies on the observation of natural phenomena in order to propose

an interpretation, often through probabilistic models

Frequentist statistics:
• Neyman & Pearson
• deterministic view of the parameters
• Maximum Likelihood Estimation
• statistical test theory & confidence interval
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Bayesian paradigm

Bayes’ theorem

Reverend Thomas Bayes posthumous article in 1763

Pr(A|E) = Pr(E|A)Pr(A)

Pr(E|A)Pr(A)+Pr
(
E|A)

Pr
(
A
) = Pr(E|A)Pr(A)

Pr(E)

(conditional probability formula: Pr(A|E) = Pr(A∩E)
Pr(E) )

In practice:
Last time you visited the doctor, you got tested for a rare disease. Unluckily,
the result was positive. . .

Given the test result, what is the probability that I actually have this disease?

(Medical tests are, after all, not perfectly accurate.)

→ Seeing Theory, Brown University
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Bayesian paradigm

Bayes theorem: exercise

In June 2022, about 0.33% of the French population was estimated to have
COVID-19.
Rapid tests have the following statistical properties:

• if someone has COVID-19, its test will come out positive 71% of the time
• if someone does not have the disease, its test will come out negative 98%

of the time

Given that someone got a positive result, what is his/her probability to truly
have COVID-19 ?

Pr(D =+) = 0.0033 Pr(T =+|D =+) = 0.71 Pr(T =−|D =−) = 0.98

Pr(D =+|T =+) =
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Bayes theorem: exercise
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of the time
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have COVID-19 ?
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Pr(D =+|T =+) = Pr(T =+|D =+)Pr(D =+)

Pr(T =+)

= Pr(T =+|D =+)Pr(D =+)

Pr(T =+|D =+)Pr(D =+)+Pr(T =+|D =−)Pr(D =−)

= Pr(T =+|D =+)Pr(D =+)

Pr(T =+|D =+)Pr(D =+)+ (1−Pr(T =−|D =−))(1−Pr(D =+))

= (0.71×0.0033)/(0.71×0.0033+ (1−0.98)× (1−0.0033)) = 11%
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Bayesian paradigm

Continuous Bayes’ theorem

• parametric (probabilistic) model f (y|θ)

• parameters θ

• probability distribution π

Continuous Bayes’ theorem:

p(θ|y) = f (y|θ)π(θ)∫
f (y|θ)π(θ)dθ

= f (y|θ)π(θ)

f (y)

Pierre-Simon de Laplace !
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Bayesian paradigm

Bayes philosophy

Parameters are random variables ! – no “true” value
⇒ induces a marginal probability distribution π(θ) on the parameters:

the prior distribution

allows to formally take into account hypotheses in the modeling

necessarily introduces subjectivity into the analysis

Bayes for biomedical research I © B. Hejblum

12/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Bayesian paradigm

Bayesian vs. Frequentists: a historical note

1 Bayes + Laplace ⇒ development of statistics in the 18-19th

centuries

2 Galton & Pearson, then Fisher & Neymann ⇒ frequentist theory
became dominant during the 20th century

3 turn of the 21th century: rise of the computer
⇒ Bayes’ comeback
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Bayesian paradigm

Bayesian vs. Frequentists: an outdated debate

Fisher firmly rejected Bayesian reasoning
⇒ community split in 2 in the 20th century

To be, or not to be, Bayesian, that is no longer the question: it is a
matter of wisely using the right tools when necessary

Gilbert Saporta

Bayes for biomedical research I © B. Hejblum

14/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Bayesian paradigm

Bayesian vs. Frequentists: an outdated debate

Fisher firmly rejected Bayesian reasoning
⇒ community split in 2 in the 20th century

To be, or not to be, Bayesian, that is no longer the question: it is a
matter of wisely using the right tools when necessary

Gilbert Saporta

Bayes for biomedical research I © B. Hejblum

14/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Bayesian modeling
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Refresher on frequentist modeling

• a series of iid (independent and identically distributed) random
variables Y = (Y1, . . . ,Yn)

• we observe a sample y = (y1, . . . ,yn)

• model their probability distribution as f (y|θ), θ ∈Θ

This model assumes there is a “true” distribution of Y characterized by
the “true” value of the parameter θ∗

θ̂ ?

Bayes for biomedical research I © B. Hejblum

15/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Refresher on frequentist modeling

• a series of iid (independent and identically distributed) random
variables Y = (Y1, . . . ,Yn)

• we observe a sample y = (y1, . . . ,yn)

• model their probability distribution as f (y|θ), θ ∈Θ

This model assumes there is a “true” distribution of Y characterized by
the “true” value of the parameter θ∗

θ̂ ?

Bayes for biomedical research I © B. Hejblum

15/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Refresher on frequentist modeling

• a series of iid (independent and identically distributed) random
variables Y = (Y1, . . . ,Yn)

• we observe a sample y = (y1, . . . ,yn)

• model their probability distribution as f (y|θ), θ ∈Θ

This model assumes there is a “true” distribution of Y characterized by
the “true” value of the parameter θ∗

θ̂ ?

Bayes for biomedical research I © B. Hejblum

15/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Refresher on frequentist modeling

• a series of iid (independent and identically distributed) random
variables Y = (Y1, . . . ,Yn)

• we observe a sample y = (y1, . . . ,yn)

• model their probability distribution as f (y|θ), θ ∈Θ

This model assumes there is a “true” distribution of Y characterized by
the “true” value of the parameter θ∗

θ̂ ?

Bayes for biomedical research I © B. Hejblum

15/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Historical motivating example

Laplace

What is the probability of birth of girls rather than boys ?
⇒ observations: births observed in Paris between 1745 and 1770

(241,945 girls & 251,527 boys)

When a child is born, is it equally likely to be a girl or a boy ?
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Construction of a Bayesian model

Three building blocks

1 the question

The first step in building a model is always to identify the question you
want to answer

2 the sampling model

Which observations are available to inform our response to this ?
How can they be described?

3 the prior

A probability distribution on the parameters θ of the sampling model
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Construction of a Bayesian model

The sampling model

y: the observations available

⇒ (parametric) probabilistic model underlying their generation:

Yi
iid∼ f (y|θ)
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Construction of a Bayesian model

The prior distribution

In Bayesian modeling, compared to frequentist modeling, we add a
probability distribution on the parameters θ

θ ∼π(θ)

Yi|θ iid∼ f (y|θ)

θ will thus be treated like a random variable,
but which is never observed !
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Construction of a Bayesian model

Back to Laplace’s historical example

1 The question

When a child is born, is it equally likely to be a girl or a boy ?

2 Sampling model

Bernoulli’s law for Yi = 1 if the new born i is a girl, 0 if it is a boy:

Yi ∼Bernoulli(θ) θ ∈ [0,1]

3 prior

A uniform prior on θ (the probability that a newborn would be a girl
rather than a boy):

θ ∼U[0,1]
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Construction of a Bayesian model

Posterior distribution

Purpose of a Bayesian modeling: infer the posterior distribution of the
parameters

• Posterior : the law of θ conditionally on the observations p(θ|y)

Bayes’ theorem:

p(θ|y) = f (y|θ)π(θ)

f (y)

Posterior is calculated from:

1 the sampling model f (y|θ) – which yields the likelihood f (y|θ) for all
observations

2 the prior π(θ)
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Construction of a Bayesian model

Application to the historical example

1 the likelihood

f (y|θ) =
n∏

i=1
θyi (1−θ)(1−yi) = θS(1−θ)n−S where S =

n∑
i=1

yi

2 the prior

Uniform: π(θ) = 1

3 the posterior

p(θ|y) = θS(1−θ)n−S

f (y)
= p(θ|y) =

(
n

S

)
(n+1)θS(1−θ)n−S

To answer the question of interest, we can then compute:

P(θ ≥ 0.5|y) =
∫ 1

0.5
p(θ|y) =

(
n

S

)
(n+1)

∫ 1

0.5
θS(1−θ)n−S dθ ≈ 1.15 10−42
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Construction of a Bayesian model

The Beta distribution

f (θ) = (α+β−1)!

(α−1)!(β−1)!
θα−1(1−θ)β−1 for α> 0 and β> 0
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Construction of a Bayesian model

Conjugacy of the Beta distribution

Beta prior : π=Beta(α,β)

Corresponding posterior : . . .

p(θ|y) ∝ θα+S−1(1−θ)β+(n−S)−1

⇒ θ|y∼Beta(α+S, β+ (n−S))

This is called a conjugated distribution because the posterior and the
prior belong to the same parametric family

The ∝ symbol means: “proportional to”
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Construction of a Bayesian model

Impact of the prior choice

Interpretation of the prior Parameters of the Beta distribution P(θ ≥ 0.5|y)
#boys > #girls α= 0.1,β= 3 1.08 10−42

#boys < #girls α= 3, β= 0.1 1.19 10−42

#boys = #girls α= 4, β= 4 1.15 10−42

#boys ̸= #girls α= 0.1,β= 0.1 1.15 10−42

non-informative α= 1, β= 1 1.15 10−42

For 493,472 newborns including 241,945 girls

Interpretation of the prior Parameters of the Beta distribution P(θ ≥ 0.5|y)
#boys > #girls α= 0.1,β= 3 0.39
#boys < #girls α= 3, β= 0.1 0.52
#boys = #girls α= 4, β= 4 0.46
#boys ̸= #girls α= 0.1,β= 0.1 0.45
non-informative α= 1, β= 1 0.45

For 20 newborns including 9 girls
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Construction of a Bayesian model

Impact of the prior choice for 20 observed births
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Prior choice

Priors: pros & cons

Having a prior distribution:

brings flexibility

allows to incorporate external knowledge

adds intrinsic subjectivity

⇒ choice (or elicitation) of a prior distribution is sensitive !

Bayes for biomedical research I © B. Hejblum

28/50



Course presentation Intro to Bayesian statistics Bayesian modeling Bayesian Inference Conclusion

Prior choice

Prior properties

1 posterior support must be included in the support of the prior :
if π(θ) = 0, then p(θ|y) = 0

2 independence of the different parameters a priori
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Prior choice

Prior Elicitation

Strategies to communicate with non-statistical experts
⇒ transform their knowledge into prior distribution

• histogram method: experts give weights to ranges of values
" might give a zero prior for plausible parameter values

• choose a parametric family of distributions p(θ|η) in agreement
with what the experts think (e.g. for quantiles or moments)
(solves the support problem but the parametric family has a big impact)

• elicit priors from the literature

• . . .
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Prior choice

SHELF: a tool for prior elicitation from expert knowledge

Your turn !

Practicals: exercise 1

Bayes for biomedical research I © B. Hejblum
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Prior choice

The quest for non-informative priors

Sometimes, one has no prior knowledge whatsoever
Which prior distribution to use ?

2 major difficulties:

1 Improper distributions
∫
Θ
π(θ)dθ =∞

2 Non-invariant distributions

Other solutions ?
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Prior choice

Jeffreys’ priors

A weakly informative prior invariant through re-parameterization

• unidimensional Jeffreys’ prior :

π(θ) ∝
√

I(θ) where I is Fisher’s information matrix

• multidimensional Jeffreys’ prior :

π(θ) ∝
√

|I(θ)|

In practice, parameter are considered independent a priori
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Going further

Hyper-priors & hierarchical models

Hierarchical levels: 1 π(θ)

2 f (y|θ)

p(θ|y) = f (y|θ)

f (y)
=

∫
f (y|θ,η)π(θ|η)h(η)dη

f (y)

= f (y|θ)
∫
π(θ|η)h(η)dη

f (y)

NB: 3 hierarchical levels ⇔ two levels with prior : π(θ) = ∫
π(θ|η)h(η)dη

⇒ can ease modeling and elicitation of the prior . . .
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Going further

Hyperprior in the historical example

Historical example of birth sex with a Beta prior
⇒ two Gamma hyper-priors for α and β (conjugated):

α∼Gamma(4,0.5)

β∼Gamma(4,0.5)

θ|α,β∼Beta(α,β)

Yi|θ iid∼ Bernoulli(θ)

Bayes for biomedical research I © B. Hejblum
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Going further

Empirical Bayes

Eliciting the prior according to its empirical marginal distribution
⇒ estimate the prior from the data

1 hyper-parameters

2 estimate them through frequentist methods (e.g. MLE) by η̂

3 plug-in estimates into the prior

4 ⇒ posterior : p(θ|y, η̂)

• Combines Bayesian and frequentist frameworks

• Concentrated posterior : ↘ variance – but ↗ bias
(data used twice ⇒ shrinkage around the average!)

• Approximate a fully Bayesian approach

Bayes for biomedical research I © B. Hejblum
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Going further

Sequential Bayes

Bayes’ theorem can be used sequentially:

p(θ|y) ∝ f (y|θ)π(θ)

If y = (y1,y2), then:

p(θ|y) ∝ f (y2|θ)f (y1|θ)π(θ) ∝ f (y2|θ)p(θ|y1)

⇒ posterior distribution updates as new observations are
aquired/available (online updates)
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Going further

Sequential Bayes in the historical example

Let’s imagine that we start by observing 20 births y1:20 at the start of
1745, including 9 girls, and that we have a uniform prior on θ :

θ|y1:20 ∼ . . .

Then we observe y21:493472 the remaining 493 452 births between 1745
and 1770, including 241 936 girls, and we then uses this Beta(10,12) prior
for θ :

θ|y1:20,y21:493472 ∼
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Going further

Sequential Bayes in the historical example

Let’s imagine that we start by observing 20 births y1:20 at the start of
1745, including 9 girls, and that we have a uniform prior on θ :

θ|y1:20 ∼Beta(10,12)

Then we observe y21:493472 the remaining 493 452 births between 1745
and 1770, including 241 936 girls, and we then uses this Beta(10,12) prior
for θ :

θ|y1:20,y21:493472 ∼Beta(10+241936,12+251516)

∼Beta(241946,251528)

We get the same posterior distribution as with all the observations taken
together at once
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Bayesian inference
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Bayesian Inference

Bayesian modeling ⇒ posterior distribution:

• all of the information on θ, conditionally to both the model and
the data

Summary of this posterior distribution ?

• center

• spread

• . . .
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Point estimates

Decision theory

Context: estimating an unknown parameter θ

Decision: choice of an “optimal” point estimator θ̂

cost function: quantify the penalty associated with the choice of a
particular θ̂

⇒ minimize the cost function to choose the optimal θ̂

a large number of cost functions are available: each one yields a different point
estimator based on its own minimum rule
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Point estimates

Point estimates

• Posterior mean: µP = E(θ|y) = Eθ|y(θ)

not always easy because it assumes the calculation of an integral. . .
⇒ minimize the quadratic error cost

• Maximum A Posteriori (MAP):
easy(ier) to compute: just a simple maximization of the posterior
f (y|θ)π(θ)

• Posterior median: the median of p(θ|(y))
⇒ minimize the absolute error cost

" the Bayesian approach gives a full characterization of the
posterior distribution that goes beyond point estimation

Bayes for biomedical research I © B. Hejblum
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Point estimates

MAP on the historical example

Maximum A Posteriori on the historical example of feminine birth in
Paris with a uniform prior:

p(θ|y) =
(

n

S

)
(n+1)θS(1−θ)n−S

with n = 493,472 et S = 241,945

θ̂MAP = S

n
= 0.4902912

Bayes for biomedical research I © B. Hejblum
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Point estimates

Posterior mean on the historical example

Posterior mean on the historical example of feminine birth in Paris with
a uniform prior:

p(θ|y) =
(

n

S

)
(n+1)θS(1−θ)n−S

with n = 493,472 et S = 241,945

E(θ|y) =
∫ 1

0
θp(θ|y)dθ

θ̃ =
(

n

S

)
(n+1)

S+1(
n

S

)
(n+1)(n+2)

= S+1

n+2
= 0.4902913
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Uncertainty

Confidence Interval reminder

What is the interpretation of a frequentist confidence interval at a 95%
level ?
. . .

⇒ Socrative: https://b.socrative.com/login/student/
Room: BAYESMED2024
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Uncertainty

Confidence Interval reminder

What is the interpretation of a frequentist confidence interval at a 95%
level ?

95% of the intervals computed on all possible samples (all those
that could have been observed) contain the true value θ

Warning: one cannot interpret a realization of a confidence interval in probabilistic
terms ! It is a common mistake. . .
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Uncertainty

Credibility interval

The credibility interval is interpreted much more naturally than the
confidence interval:

It is an interval that has a 95% chance of containing θ

(for a 95% level, obviously)

Defined as an interval with a high posterior probability of occurrence.

For example, a 95% credibility interval is an interval [tinf , tsup] such

that
∫ tsup

tinf

p(θ|y)dθ = 0.95

NB: usually interested in the shortest possible 95% credibility interval
(also called Highest Density Interval).
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Uncertainty

Bayes Factor

Bayes Factor: marginal likelihood ratio between two hypotheses

BF10 = f (y|H1)

f (y|H0)

⇒ favored support for either hypothesis from the observed data y

BF value Interpretation
BF < 1 Negative (favors H0)

1 ≤ BF < 101/2 Barely worth mentioning
101/2 ≤ BF < 10 Substantial
10 ≤ BF < 103/2 Strong

103/2 ≤ BF < 100 Very strong
100 ≤ BF Decisive

Posterior odds:
p(H1|y)

p(H0|y)
= BF10 × p(H1)

p(H0)
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Uncertainty

Bayes Factor
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Asymptotics

Concentration of the posterior

Doob’s convergence

→ Seeing Theory, Brown University
Bayes for biomedical research I © B. Hejblum
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Asymptotics

Normal approximation

Bernstein-von Mises Theorem (or Bayesian central-limit theorem):
For a large n the posterior can be approximated by a normal distribution.

p(θ|y) ≈N (θ̂, I(θ̂)−1)

Consequences:

• Bayesian methods and frequentist procedures based on maximum
likelihood give, for large enough n, very close results

• the posterior can be computed as a normal whose mean and
variance we can calculate simply using the MAP

Bayes for biomedical research I © B. Hejblum
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Conclusion
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Essential concepts

1 Bayesian modeling:

θ ∼π(θ) the prior

Yi|θ iid∼ f (y|θ) sampling model

2 Bayes’ formula: p(θ|y) = f (y|θ)π(θ)

f (y)
with p(θ|y) the posterior, f (y|θ) the likelihood (inherited from the sampling
model), π(θ) the prior and f (y) = ∫

f (y|θ)π(θ) is the marginal distribution of the
data, i.e. the normalizing constant (with respect to θ)

3 The posterior distribution is given by:

p(θ|y) ∝ f (y|θ)π(θ)

4 Posterior mean, MAP, and credibility intervals

Bayes for biomedical research I © B. Hejblum
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Practical use

The Bayesian framework is (just) another statistical tool for data analysis

Particularly useful when:

• few observations only are available

• there is important knowledge a priori

Like any statistical method, Bayesian analysis has advantages and
disadvantages that will be more or less important depending on the
application considered.
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Questions ?
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