Hyper-priors & hierarchical models

Hierarchical levels:

1 $\pi(\theta)$

2 $f(y|\theta)$

Course presentation 0000000 Intro to Bayesian stat

Bayesian modeling

Bayesian Infer
0000000000

Conclusion 00

Going further

Hyper-*priors* & hierarchical models

Hierarchical levels:

1 $\eta \sim h(\eta)$

- 2 $\pi(\theta|\eta)$
- $3 f(y|\theta)$

34/50

Hyper-*priors* & hierarchical models

Hierarchical levels:

1 $\eta \sim h(\eta)$

2 $\pi(\theta|\eta)$

 $3 f(y|\theta)$

 $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$

34/50

Hierarchical levels:

1 $\eta \sim h(\eta)$

- 2 $\pi(\theta|\eta)$
- $\Im f(y|\theta)$

 $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$

NB: 3 hierarchical levels \Leftrightarrow two levels with prior: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

Hierarchical levels:

1 $\eta \sim h(\eta)$

- 2 $\pi(\theta|\eta)$
- $3 f(y|\theta)$

 $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})} = \frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$

NB: 3 hierarchical levels \Leftrightarrow two levels with *prior*: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

⇒ can ease modeling and elicitation of the prior...

Hyperprior in the historical example

Historical example of birth sex with a Beta prior

 \Rightarrow two Gamma hyper-*priors* for α and β (conjugated):

 $\begin{aligned} & \alpha \sim \text{Gamma}(4, 0.5) \\ & \beta \sim \text{Gamma}(4, 0.5) \\ & \theta | \alpha, \beta \sim \text{Beta}(\alpha, \beta) \\ & Y_i | \theta \stackrel{iid}{\sim} \text{Bernoulli}(\theta) \end{aligned}$

Eliciting the prior according to its empirical marginal distribution

- \Rightarrow estimate the *prior* from the data
 - 1 hyper-parameters
 - 2 estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
 - 3 plug-in estimates into the prior
 - **4** \Rightarrow posterior: $p(\theta|\mathbf{y}, \hat{\eta})$

Eliciting the prior according to its empirical marginal distribution

- \Rightarrow estimate the *prior* from the data
 - hyper-parameters
 - 2 estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
 - 3 plug-in estimates into the prior
 - **4** \Rightarrow posterior: $p(\theta|\mathbf{y}, \hat{\eta})$
 - Combines Bayesian and frequentist frameworks
 - Concentrated *posterior*: \ variance but / bias (data used twice ⇒ shrinkage around the average!)
 - Approximate a fully Bayesian approach

36/50

Bayes' theorem can be used sequentially:

 $p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta) \pi(\theta)$

If $\boldsymbol{y} = (\boldsymbol{y}_1, \boldsymbol{y}_2)$, then:

 $p(\boldsymbol{\theta}|\boldsymbol{y}) \propto f(\boldsymbol{y}_2|\boldsymbol{\theta}) f(\boldsymbol{y}_1|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \propto f(\boldsymbol{y}_2|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\boldsymbol{y}_1)$

⇒ posterior distribution updates as new observations are aquired/available (online updates)

Sequential Bayes in the historical example

Let's imagine that we start by observing 20 births $y_{1:20}$ at the start of 1745, including 9 girls, and that we have a uniform *prior* on θ :

 $\theta | \boldsymbol{y}_{1:20} \sim \dots$

Sequential Bayes in the historical example

Let's imagine that we start by observing 20 births $y_{1:20}$ at the start of 1745, including 9 girls, and that we have a uniform *prior* on θ :

 $\theta|\mathbf{y}_{1:20} \sim \mathsf{Beta}(10, 12)$

Then we observe $y_{21:493472}$ the remaining 493452 births between 1745 and 1770, including 241 936 girls, and we then uses this Beta(10,12) prior for θ :

 $\theta | \mathbf{y}_{1:20}, \mathbf{y}_{21:493\,472} \sim \dots$

Sequential Bayes in the historical example

Let's imagine that we start by observing 20 births $y_{1:20}$ at the start of 1745, including 9 girls, and that we have a uniform *prior* on θ :

 $\theta|\textbf{y}_{1:20} \sim \mathsf{Beta}(10, 12)$

Then we observe $y_{21:493472}$ the remaining 493452 births between 1745 and 1770, including 241 936 girls, and we then uses this Beta(10,12) prior for θ :

$$\theta | \mathbf{y}_{1:20}, \mathbf{y}_{21:493472} \sim \text{Beta}(10 + 241936, 12 + 251516)$$

~ Beta(241946, 251528)

We get the same *posterior* distribution as with all the observations taken together at once