[Course presentation](#page-1-0) [Intro to Bayesian statistics](#page-10-0) [Bayesian modeling](#page--1-0) [Bayesian Inference](#page--1-0) [Conclusion](#page--1-0) [Going further](#page--1-0) Hyper-*priors* & hierarchical models

Hierarchical levels: $\mathbf{I} \pi(\theta)$

2 $f(\mathbf{y}|\theta)$

[Course presentation](#page-1-0) [Intro to Bayesian statistics](#page-10-0) [Bayesian modeling](#page--1-0) [Bayesian Inference](#page--1-0) [Conclusion](#page--1-0)

[Going further](#page--1-0)

Hyper-*priors* & hierarchical models

Hierarchical levels: $\mathbf{1} \ \eta \sim h(\eta)$

- 2 $\pi(\theta|\eta)$
- 3 $f(\mathbf{y}|\theta)$

[Course presentation](#page-1-0) [Intro to Bayesian statistics](#page-10-0) [Bayesian modeling](#page--1-0) [Bayesian Inference](#page--1-0) [Conclusion](#page--1-0) [Going further](#page--1-0) Hyper-*priors* & hierarchical models

Hierarchical levels: $\mathbf{1} \cdot \mathbf{n} \sim h(n)$

2 $\pi(\theta|\eta)$

3 $f(\mathbf{y}|\theta)$

 $p(\theta | \mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$ = $\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta$ *f* (*y*)

 $p(\theta | \mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$ = $\frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$ *f* (*y*)

2 $\pi(\theta|\eta)$

3 $f(\mathbf{v}|\theta)$

NB: 3 hierarchical levels \Leftrightarrow two levels with *prior*: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

Hierarchical levels: $\mathbf{1} \cdot \eta \sim h(\eta)$

- 2 $\pi(\theta|\eta)$
- 3 $f(\mathbf{v}|\theta)$

 $p(\theta | \mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$ = $\frac{\int f(\mathbf{y}|\theta,\eta)\pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\theta)\int \pi(\theta|\eta)h(\eta)d\eta}{f(\mathbf{y})}$ *f* (*y*)

NB: 3 hierarchical levels \Leftrightarrow two levels with *prior*: $\pi(\theta) = \int \pi(\theta|\eta) h(\eta) d\eta$

) can ease modeling and elicitation of the *prior*...

[Going further](#page-0-0)

Hyperprior in the historical example

Historical example of birth sex with a Beta *prior*

 \Rightarrow two Gamma hyper-*priors* for α and β (conjugated):

 $\alpha \sim$ Gamma(4,0.5) $\beta \sim$ Gamma(4,0.5) $\theta | \alpha, \beta \sim \text{Beta}(\alpha, \beta)$ $Y_i | \theta \stackrel{iid}{\sim}$ Bernoulli (θ)

Eliciting the *prior* according to its empirical marginal distribution

- \Rightarrow estimate the *prior* from the data
	- 1 hyper-parameters
	- 2 estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
	- ³ plug-in estimates into the *prior*
	- $\phi \Rightarrow$ *posterior*: $p(\theta | y, \hat{\eta})$

Eliciting the *prior* according to its empirical marginal distribution

- \Rightarrow estimate the *prior* from the data
	- 1 hyper-parameters
	- 2 estimate them through frequentist methods (e.g. MLE) by $\hat{\eta}$
	- ³ plug-in estimates into the *prior*
	- $\phi \Rightarrow$ *posterior*: $p(\theta | y, \hat{\eta})$
	- *•* Combines Bayesian and frequentist frameworks
	- Concentrated *posterior*: \setminus variance but / bias (data used twice \Rightarrow shrinkage around the average!)
	- *•* Approximate a fully Bayesian approach

Bayes' theorem can be used sequentially:

 $p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)$

If $y = (y_1, y_2)$, then:

 $p(\theta|\mathbf{y}) \propto f(\mathbf{y}_2|\theta) f(\mathbf{y}_1|\theta) \pi(\theta) \propto f(\mathbf{y}_2|\theta) p(\theta|\mathbf{y}_1)$

 \Rightarrow *posterior* distribution updates as new observations are aquired/available (*online updates*)

37/50

Sequential Bayes in the historical example

Let's imagine that we start by observing 20 births $y_{1:20}$ at the start of 1745, including 9 girls, and that we have a uniform *prior* on θ :

 $\theta | y_{1:20} \sim ...$

[Going further](#page-0-0)

Sequential Bayes in the historical example

Let's imagine that we start by observing 20 births $y_{1:20}$ at the start of 1745, including 9 girls, and that we have a uniform *prior* on θ :

 $\theta | y_{1:20} \sim \text{Beta}(10, 12)$

Then we observe $v_{21:493.472}$ the remaining 493 452 births between 1745 and 1770, including 241 936 girls, and we then uses this Beta(10, 12) *prior* for θ :

 $\theta | \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_2, \dots$

38/50

[Going further](#page-0-0)

Sequential Bayes in the historical example

Let's imagine that we start by observing 20 births $y_{1:20}$ at the start of 1745, including 9 girls, and that we have a uniform *prior* on θ :

 $\theta | y_{1:20} \sim \text{Beta}(10, 12)$

Then we observe $v_{21:493.472}$ the remaining 493 452 births between 1745 and 1770, including 241 936 girls, and we then uses this Beta(10, 12) *prior* for θ :

```
\theta<sub>1</sub>, y<sub>1:20</sub>, y<sub>21:493</sub>, z<sub>2</sub> \sim Beta(10 + 241 936, 12 + 251 516)
                   \sim Beta(241 946, 251 528)
```
We get the same *posterior* distribution as with all the observations taken together at once