Direct sampling methods

MCMC in pratice 00000000000000

Generating random numbers from common probability distributions

Random & pseudo-random numbers

There exist several ways to generate so-called "random" numbers according to known distributions

NB: computer programs do not generate truly random numbers

Rather **pseudo-random**, which seem random but are actually generated by a deterministic process (depending on a "**seed**" parameter).

Generating random numbers from common probability distributions

Uniform sample generation

Linear congruential algorithm: sample pseudo-random numbers according to the Uniform distribution on [0,1] (Lehmer, 1948)

with y_0 the "seed", i.e. the starting point

<u>Remark:</u> $0 \le y_n \le m - 1 \Rightarrow$ in practice *m* very large (e.g. 2¹⁹⁹³⁷, default in **R** which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on $\left[0,1\right]$ will be considered reliable and used by the different sampling algorithms

Generating random numbers from common probability distributions

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathscr{U}_{[0,1]}$

Intro 0000000 Direct sampling 00●0000 MCMC Algorithms

Generating random numbers from common probability distributions

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Binomial Bin(n, p) :

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$
$$X = \sum_{i=1}^n Y_i \sim Bin(n, p)$$

10/42

Intro 0000000 Direct sampling 00€0000 MCMC Algorithms

MCMC in pratice 000000000000000

Generating random numbers from common probability distributions

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Binomial Bin(n, p) :

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$
$$X = \sum_{i=1}^n Y_i \sim Bin(n, p)$$

Normal $\mathcal{N}(0,1)$ (Box-Müller algorithm):

 U_1 and U_2 are 2 independent uniform variables on [0;1]

$$Y_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
$$Y_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$$

 \Rightarrow Y_1 & Y_2 are independent random variables each following a $\mathcal{N}(0,1)$

Sampling according to a distribution defined analytically

Inverse transform sampling

<u>Definition</u>: For a function F defined on \mathbb{R} , its **generalized inverse** is defined as: $F^{-1}(u) = \inf\{x \text{ such that } F(x) > u\}$

11/42

MCMC in pratice 00000000000000

Sampling according to a distribution defined analytically

Inverse transform sampling

<u>**Definition**</u>: For a function F defined on \mathbb{R} , its **generalized inverse** is defined as: $F^{-1}(u) = \inf\{x \text{ such that } F(x) > u\}$

Property: Let • *F* be a cumulative probability distribution function • *U* be a uniform random variable on [0,1]Then $F^{-1}(U)$ defines a random variable whith cumulative probability distribution function *F*

- If 1 one knows F, the cumulative probability distribution function from which to sample
 - 2 one can invert F
- \Rightarrow then one can sample this distribution from a uniform sample on [0,1]

Direct sampling ○○○○●○○ MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

12/42

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 - \exp(-\lambda x)$

Let F(x) = u

Then $x = \dots$

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 - \exp(-\lambda x)$

Let
$$F(x) = u$$

Then $x = -\frac{1}{\lambda}\log(1-u)$
 \Rightarrow and if $U \sim U_{[0;1]}$, then $X = F^{-1}(U) = -\frac{1}{\lambda}\log(1-U) \sim E(\lambda)$.

Intro 0000000 Direct sampling

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Sampling according to a distribution defined analytically

Your turn !

Practical: exercise 3