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Introduction
Estimating the posterior distribution

is often costly
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Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but
are key to its successful application
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Multidimensional parameters

Numerical integration – I

Real world applications: µ = (µ1, . . . ,µd)

) joint posterior distribution of all d parameters

" hard to compute:

• complexe likelihood

• integrating constant f (y) =
R
£d f (y|µ)º(µ)dµ

• . . .

Analytical form rarely available
) numerical computations: integral of d multiplicity

– difficult when d is big (numerical issues as soon as d > 4)
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Multidimensional parameters

Numerical integration – II

Even dimension 1 can be tough !

Example :
Let x1, . . . ,xn iid according to a Cauchy distribution C (µ,1)
with prior º(µ) =N (µ,æ2) (µ and æ known)

p(µ|x1, . . . ,xn) / f (x1, . . . ,xn|µ)º(µ)

/ e
° (µ°µ)2

2æ2
nY

i=1
(1+ (xi °µ)2)°1

" normalizing constant has no analytical form ) no analytical form for
this posterior distibution
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Multidimensional parameters

Marginal posterior distributions

Objective: draw conclusion based on the joint posterior distribution

) probability of all possible values for each parameter (i.e. their marginal
distribution – uni-dimensional)

" Recovering all of the posterior density numerically requires the
calculation of multidimensional integrals for each possible value of the
parameter
) a sufficiently precise computation seems unrealistic

Algorithms based on sampling simulations
especially Markov chain Monte Carlo (MCMC)

Bayes in biomedical research III © B. Hejblum

4/42



Intro Direct sampling MCMC Algorithms MCMC in pratice

Multidimensional parameters

Marginal posterior distributions

Objective: draw conclusion based on the joint posterior distribution

) probability of all possible values for each parameter (i.e. their marginal
distribution – uni-dimensional)

" Recovering all of the posterior density numerically requires the
calculation of multidimensional integrals for each possible value of the
parameter
) a sufficiently precise computation seems unrealistic

Algorithms based on sampling simulations
especially Markov chain Monte Carlo (MCMC)

Bayes in biomedical research III © B. Hejblum

4/42


