Bayesian methods in biomedical research Part III: Bayesian computation

Boris Hejblum https://bayesbiomed.borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen April 11th, 2024

Introduction

Estimating the *posterior* distribution is often costly

MCMC Algorithms

MCMC in pratice 00000000000000

Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but are key to its successful application

Intro

Direct sampling

MCMC Algorithms 00000000000000 MCMC in pratice 000000000000000

Multidimensional parameters

Numerical integration – I

Real world applications: $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)$

 \Rightarrow joint *posterior* distribution of all *d* parameters

▲ hard to compute:

- complexe likelihood
- integrating constant $f(\mathbf{y}) = \int_{\Theta^d} f(\mathbf{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta}$

• . . .

Analytical form rarely available

- \Rightarrow numerical computations: integral of *d* multiplicity
 - difficult when d is big (numerical issues as soon as d > 4)

Multidimensional parameters

Numerical integration – II

Even dimension 1 can be tough !

Example :

Let x_1, \ldots, x_n *iid* according to a Cauchy distribution $\mathscr{C}(\theta, 1)$ with prior $\pi(\theta) = \mathscr{N}(\mu, \sigma^2)$ (μ and σ known)

$$p(\theta|x_1,\ldots,x_n) \propto f(x_1,\ldots,x_n|\theta)\pi(\theta)$$
$$\propto e^{-\frac{(\theta-\mu)^2}{2\sigma^2}} \prod_{i=1}^n (1+(x_i-\theta)^2)^{-1}$$

 $\underline{\wedge}$ normalizing constant has no analytical form \Rightarrow no analytical form for this *posterior* distibution

Multidimensional parameters

Marginal *posterior* distributions

Objective: draw conclusion based on the joint posterior distribution

 \Rightarrow probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\land}$ Recovering all of the *posterior* density **numerically** requires the calculation of multidimensional integrals for each possible value of the parameter

 \Rightarrow a sufficiently precise computation seems unrealistic

Multidimensional parameters

Marginal *posterior* distributions

Objective: draw conclusion based on the joint posterior distribution

 \Rightarrow probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\land}$ Recovering all of the *posterior* density **numerically** requires the calculation of multidimensional integrals for each possible value of the **parameter**

 \Rightarrow a sufficiently precise computation seems unrealistic

Algorithms based on **sampling simulations** especially **Markov chain Monte Carlo** (MCMC)