Direct samplin

MCMC Algorithms 00000000000000 MCMC in pratice 000000000000000

Computational Bayesian statistics

Computational solutions

Bayes Theorem ⇒ *posterior* distribution

Direct samplin

MCMC Algorithms 00000000000000 MCMC in pratice 000000000000000

Computational Bayesian statistics

Computational solutions

Bayes Theorem ⇒ *posterior* distribution

 \wedge in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

C B. Hejblum

Computational Bayesian statistics

Computational solutions

Bayes Theorem \Rightarrow *posterior* distribution

 $\underline{\wedge}$ in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

How can one estimate the *posteriori* distribution ?

- \Rightarrow sample according to this posterior distribution
 - direct sampling
 - Markov chain Monte Carlo (MCMC)

Computational Bayesian statistics

Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

 \Rightarrow use random numbers to compute quantities whose analytical computation is hard (or impossible)

Computational Bayesian statistics

Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

 \Rightarrow use random numbers to compute quantities whose analytical computation is hard (or impossible)

• Law of Large Numbers (LLN)

so-called "Monte Carlo sample"

⇒ compute various functions from that sample distribution

Example : One wants to compute
$$\mathbb{E}[f(X)] = \int f(x)p_X(x)dx$$

If $x_i \stackrel{iid}{\sim} p_X$, $\mathbb{E}[f(X)] = \frac{1}{N} \sum_{i=1}^N f(x_i)$ (LLN)
 \Rightarrow if one knows how to sample from p_X , one can then estimate $\mathbb{E}[f(X)]$

Direct samplir

MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square: $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points {(x₁₁, x₂₁),..., (x_{1n}, x_{2n})} = {P₁,..., P_n} on the 36 × 36 grid (generated with the *roulette*)
- 3 Count the number of points inside the disk
- ⇒ Compute the ratio (estimated probability of being inside the disk while in the square): $\hat{p}_C = \frac{\sum P_i \in circle}{n}$

Direct samplir

MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square: $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points {(x₁₁, x₂₁),..., (x_{1n}, x_{2n})} = {P₁,..., P_n} on the 36 × 36 grid (generated with the *roulette*)
- 3 Count the number of points inside the disk
- ⇒ Compute the ratio (estimated probability of being inside the disk while in the square): $\hat{p}_C = \frac{\sum P_i \in circle}{n}$

Direct sampli

MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

A casino *roulette* (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk : $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled *n*: $\lim_{n \to +\infty} \hat{p}_C = p_C = \pi/4$ (LLN)

Direct sampli

MCMC Algorithms 000000000000000 MCMC in pratice 00000000000000

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

A casino *roulette* (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk : $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled *n*: $\lim_{n \to +\infty} \hat{p}_C = p_C = \pi/4$ (LLN)

Monte Carlo sample \Rightarrow compute various functions e.g. $\pi = 4 \times$ the probability of being inside the disk

Direct sampling

MCMC Algorithms 000000000000000 MCMC in pratice 000000000000000

Computational Bayesian statistics

Your turn !

Practical: exercise 2

