
Intro Direct sampling MCMC Algorithms MCMC in pratice

Convergence diagnostics

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a Monte
Carlo sample from the posterior distribution

) requires Markov chain convergence towards its stationary law
(posterior distribution).

" No guaranty that this convergence will occur within finite time

) study the convergence empirically for each analysis

� Initialisation of several Markov chains from different initial values
) If convergence is reached, then these chains must be overlapping
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Convergence diagnostics

Graphical diagnostics

• Trace

• Posterior density

• Running Quantiles

• Gelman-Rubin diagram

• Auto-correlogram
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Convergence diagnostics

Trace

coda::traceplot()

0 200 400 600 800 1000

2
3

4
5

Trace

Iterations

0 500 1000 1500 2000

−0
.5

0.
5

1.
5

2.
5

Trace

Iterations

chain traces must overlap and mix

% n.iter and/or % burn-in
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Convergence diagnostics

Posterior density

coda::densplot()
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density must be smooth and uni-modal

% n.iter and/or % burn-in
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Convergence diagnostics

Running quantiles

coda::cumuplot()
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running quantiles must be stable across iterations

% n.iter and/or % burn-in
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Convergence diagnostics

Gelman-Rubin statistic

• variation between the different chains
• variation within a given chain

If the algorithm has properly converged, the between-chain variation must be close to
zero
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Other statistics exist. . .
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Convergence diagnostics

Gelman-Rubin diagram

coda::gelman.plot()

200 400 600 800 1000

2
4

6
8

10
12

14

Gelman−Rubin statistic

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

0 500 1000 1500 2000

1.
00

1.
04

1.
08

1.
12

Geman−Rubin statistic

last iteration in chain
sh

rin
k 

fa
ct

or

median
97.5%

Gelman-Rubin statistic median must remain under the 1,01 threshold (or 1,05)

% n.iter and/or % burn-in
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Convergence diagnostics

Effective Sample Size (ESS)

Markov property ) auto-correlation between values sampled after one
another (dependent sampling) :

• reduce the amount of information available within a sample size n

• slows down LLN convergence

Effective sample size quantifies this:

ESS = N

1+2
P+1

k=1Ω(k)

where Ω(k) is the auto-correlation with lag k.

Space out saved samples (e.g. every 2, 5, or 10 iterations)
) reduces dependency within the Monte Carlo sample generated
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Convergence diagnostics

Auto-correlation

coda::acfplot()
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auto-correlations must decrease rapidly to oscillate around zero

% thin and/or % n.iter and/or % burn-in
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Convergence diagnostics

Monte Carlo error

For a given parameter, quantifies the error introduced through the Monte
Carlo method
(standard deviation of the Monte Carlo estimator across the chains)

• That error must be consistent from one chain to another

• The larger N (number of iterations), the smaller the Monte Carlo error
will be

" This Monte Carlo error must be small with respect to the estimated
variance of the posterior distribution
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