0000000

MCMC Algorithms

MCMC in pratice 000000000000000

MCMC Sampling

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution

21/42

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution ⇒ sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution \Rightarrow sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution \Rightarrow sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N}\sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

MCMC algorithms: general principle

Approximate an integral (or another function) from a target distribution \Rightarrow sample a Markov chain whose stationary law is the target (such as the *posterior*) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N}\sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

$$\overbrace{X_0 \to X_1 \to X_2 \to \dots \to X_n}^{\text{Markov chain convergence}} \to \overbrace{X_{n+1} \to X_{n+2} \to \dots \to X_{n+N}}^{\text{Monte Carlo sample}}$$

MCMC Algorithms

MCMC in pratice 00000000000000

MCMC Sampling

General framework of MCMC algorithms

MCMC algorithms uses an acceptance-rejection framework

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution q proposing new samples

 \Rightarrow infinite possibilities: some better than others

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution q proposing new samples

 \Rightarrow infinite possibilities: some better than others

To guaranty convergence towards the target \tilde{p} :

- the support of q has to cover the support of \tilde{p}
- *q* must not generate periodic values

23/42

Choosing the instrumental distribution

No absolute optimal choice for the instrumental distribution q proposing new samples

 \Rightarrow infinite possibilities: some better than others

To guaranty convergence towards the target \tilde{p} :

- the support of q has to cover the support of \tilde{p}
- q must not generate periodic values

NB: *ideally q* is easy and fast to compute