Conclusion

Bayes in biomedical research I

Essential concepts

Bayesian modeling:

 $\theta \sim \pi(\theta)$ the prior $Y_i | \theta \stackrel{iid}{\sim} f(y|\theta)$ sampling model

2 Bayes' formula: $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$

with $p(\theta|\mathbf{y})$ the posterior, $f(\mathbf{y}|\theta)$ the likelihood (inherited from the sampling model), $\pi(\theta)$ the prior and $f(\mathbf{y}) = \int f(\mathbf{y}|\theta)\pi(\theta)$ is the marginal distribution of the data, i.e. the normalizing constant (with respect to θ)

3 The *posterior* distribution is given by:

 $p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta) \pi(\theta)$

4 Posterior mean, MAP, and credibility intervals

Practical use

The Bayesian framework is (just) another statistical tool for data analysis

Particularly useful when:

- few observations only are available
- there is important knowledge a priori

Like any statistical method, Bayesian analysis has advantages and disadvantages that will be more or less important depending on the application considered.

Questions ?

